Как можно найти нок двух натуральных чисел. Нахождение наименьшего общего кратного: способы, примеры нахождения НОК


Тема «Кратные числа» изучается в 5 классе общеобразовательной школы. Ее целью является совершенствование письменных и устных навыков математических вычислений. На этом уроке вводятся новые понятия - «кратные числа» и «делители», отрабатывается техника нахождения делителей и кратных натурального числа, умение находить НОК различными способами.

Эта тема является очень важной. Знания по ней можно применить при решении примеров с дробями. Для этого нужно найти общий знаменатель путем расчета наименьшего общего кратного (НОК).

Кратным А считается целое число, которое делится на А без остатка.

Каждое натуральное число имеет бесконечное количество кратных ему чисел. Наименьшим считается оно само. Кратное не может быть меньше самого числа.

Нужно доказать, что число 125 кратно числу 5. Для этого нужно первое число разделить на второе. Если 125 делится на 5 без остатка, то ответ положительный.

Данный способ применим для небольших чисел.

При расчёте НОК встречаются особые случаи.

1. Если необходимо найти общее кратное для 2-х чисел (например, 80 и 20), где одно из них (80) делится без остатка на другое (20), то это число (80) и есть наименьшее кратное этих двух чисел.

НОК (80, 20) = 80.

2. Если два не имеют общего делителя, то можно сказать, что их НОК - это произведение этих двух чисел.

НОК (6, 7) = 42.

Рассмотрим последний пример. 6 и 7 по отношению к 42 являются делителями. Они делят кратное число без остатка.

В этом примере 6 и 7 являются парными делителями. Их произведение равно самому кратному числу (42).

Число называется простым, если делится только само на себя или на 1 (3:1=3; 3:3=1). Остальные называются составными.

В другом примере нужно определить, является ли 9 делителем по отношению к 42.

42:9=4 (остаток 6)

Ответ: 9 не является делителем числа 42, потому что в ответе есть остаток.

Делитель отличается от кратного тем, что делитель - это то число, на которое делят натуральные числа, а кратное само делится на это число.

Наибольший общий делитель чисел a и b , умноженный на их наименьшее кратное, даст произведение самих чисел a и b .

А именно: НОД (а, b) х НОК (а, b) = а х b.

Общие кратные числа для более сложных чисел находят следующим способом.

Например, найти НОК для 168, 180, 3024.

Эти числа раскладываем на простые множители, записываем в виде произведения степеней:

168=2³х3¹х7¹

2⁴х3³х5¹х7¹=15120

НОК (168, 180, 3024) = 15120.

Наименьшее общее кратное двух чисел непосредственно связано с наибольшим общим делителем этих чисел. Эта связь между НОД и НОК определяется следующей теоремой.

Теорема.

Наименьшее общее кратное двух положительных целых чисел a и b равно произведению чисел a и b , деленному на наибольший общий делитель чисел a и b , то есть, НОК(a, b)=a·b:НОД(a, b) .

Доказательство.

Пусть М – какое-нибудь кратное чисел a и b . То есть, М делится на a , и по определению делимости существует некоторое целое число k такое, что справедливо равенство M=a·k . Но М делится и на b , тогда a·k делится на b .

Обозначим НОД(a, b) как d . Тогда можно записать равенства a=a 1 ·d и b=b 1 ·d , причем a 1 =a:d и b 1 =b:d будут взаимно простыми числами . Следовательно, полученное в предыдущем абзаце условие, что a·k делится на b , можно переформулировать так: a 1 ·d·k делится на b 1 ·d , а это в силу свойств делимости эквивалентно условию, что a 1 ·k делится на b 1 .

Также нужно записать два важных следствия из рассмотренной теоремы.

    Общие кратные двух чисел совпадают с кратными их наименьшего общего кратного.

    Это действительно так, так как любое общее кратное M чисел a и b определяется равенством M=НОК(a, b)·t при некотором целом значении t .

    Наименьшее общее кратное взаимно простых положительных чисел a и b равно их произведению.

    Обоснование этого факта достаточно очевидно. Так как a и b взаимно простые, то НОД(a, b)=1 , следовательно, НОК(a, b)=a·b:НОД(a, b)=a·b:1=a·b .

Наименьшее общее кратное трех и большего количества чисел

Нахождение наименьшего общего кратного трех и большего количества чисел можно свести к последовательному нахождению НОК двух чисел. Как это делается, указано в следующей теореме.a 1 , a 2 , …, a k совпадают с общими кратными чисел m k-1 и a k , следовательно, совпадают с кратными числа m k . А так как наименьшим положительным кратным числа m k является само число m k , то наименьшим общим кратным чисел a 1 , a 2 , …, a k является m k .

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Виноградов И.М. Основы теории чисел.
  • Михелович Ш.Х. Теория чисел.
  • Куликов Л.Я. и др. Сборник задач по алгебре и теории чисел: Учебное пособие для студентов физ.-мат. специальностей педагогических институтов.

Второе число: b=

Разделитель разрядов Без разделителя пробел " ´

Результат:

Наибольший общий делитель НОД(a ,b )=6

Наименьшее общее кратное НОК(a ,b )=468

Наибольшее натуральное число, на которое делятся без остатка числа a и b, называется наибольшим общим делителем (НОД) этих чисел. Обозначается НОД(a,b), (a,b), gcd(a,b) или hcf(a,b).

Наименьшее общее кратное (НОК) двух целых чисел a и b есть наименьшее натуральное число, которое делится на a и b без остатка. Обозначается НОК(a,b), или lcm(a,b).

Целые числа a и b называются взаимно простыми , если они не имеют никаких общих делителей кроме +1 и −1.

Наибольший общий делитель

Пусть даны два положительных числа a 1 и a 2 1). Требуется найти общий делитель этих чисел, т.е. найти такое число λ , которое делит числа a 1 и a 2 одновременно. Опишем алгоритм.

1) В данной статье под словом число будем понимать целое число.

Пусть a 1 ≥ a 2 , и пусть

где m 1 , a 3 некоторые целые числа, a 3 <a 2 (остаток от деления a 1 на a 2 должен быть меньше a 2).

Предположим, что λ делит a 1 и a 2 , тогда λ делит m 1 a 2 и λ делит a 1 −m 1 a 2 =a 3 (Утверждение 2 статьи "Делимость чисел. Признак делимости"). Отсюда следует, что всякий общий делитель a 1 и a 2 является общим делителем a 2 и a 3 . Справедливо и обратное, если λ общий делитель a 2 и a 3 , то m 1 a 2 и a 1 =m 1 a 2 +a 3 также делятся на λ . Следовательно общий делитель a 2 и a 3 есть также общий делитель a 1 и a 2 . Так как a 3 <a 2 ≤a 1 , то можно сказать, что решение задачи по нахождению общего делителя чисел a 1 и a 2 сведено к более простой задаче нахождения общего делителя чисел a 2 и a 3 .

Если a 3 ≠0, то можно разделить a 2 на a 3 . Тогда

,

где m 1 и a 4 некоторые целые числа, (a 4 остаток от деления a 2 на a 3 (a 4 <a 3)). Аналогичными рассуждениями мы приходим к выводу, что общие делители чисел a 3 и a 4 совпадают с общими делителями чисел a 2 и a 3 , и также с общими делителями a 1 и a 2 . Так как a 1 , a 2 , a 3 , a 4 , ... числа, постоянно убывающие, и так как существует конечное число целых чисел между a 2 и 0, то на каком то шаге n , остаток от деления a n на a n+1 будет равен нулю (a n+2 =0).

.

Каждый общий делитель λ чисел a 1 и a 2 также делитель чисел a 2 и a 3 , a 3 и a 4 , .... a n и a n+1 . Справедливо и обратное, общие делители чисел a n и a n+1 являются также делителями чисел a n−1 и a n , .... , a 2 и a 3 , a 1 и a 2 . Но общий делитель чисел a n и a n+1 является число a n+1 , т.к. a n и a n+1 без остатка делятся на a n+1 (вспомним, что a n+2 =0). Следовательно a n+1 является и делителем чисел a 1 и a 2 .

Отметим, что число a n+1 является наибольшим из делителей чисел a n и a n+1 , так как наибольший делитель a n+1 является сам a n+1 . Если a n+1 можно представить в виде произведения целых чисел, то эти числа также являются общими делителями чисел a 1 и a 2 . Число a n+1 называют наибольшим общим делителем чисел a 1 и a 2 .

Числа a 1 и a 2 могут быть как положительными, так и отрицательными числами. Если один из чисел равен нулю, то наибольший общий делитель этих чисел будет равен абсолютной величине другого числа. Наибольший общий делитель нулевых чисел не определен.

Вышеизложенный алгоритм называется алгоритмом Евклида для нахождения наибольшего общего делителя двух целых чисел.

Пример нахождения наибольшего общего делителя двух чисел

Найти наибольший общий делитель двух чисел 630 и 434.

  • Шаг 1. Делим число 630 на 434. Остаток 196.
  • Шаг 2. Делим число 434 на 196. Остаток 42.
  • Шаг 3. Делим число 196 на 42. Остаток 28.
  • Шаг 4. Делим число 42 на 28. Остаток 14.
  • Шаг 5. Делим число 28 на 14. Остаток 0.

На шаге 5 остаток от деления равен 0. Следовательно наибольший общий делитель чисел 630 и 434 равен 14. Заметим, что числа 2 и 7 также являются делителями чисел 630 и 434.

Взаимно простые числа

Определение 1. Пусть наибольший общий делитель чисел a 1 и a 2 равен единице. Тогда эти числа называются взаимно простыми числами , не имеющими общего делителя.

Теорема 1. Если a 1 и a 2 взаимно простые числа, а λ какое то число, то любой общий делитель чисел λa 1 и a 2 является также общим делителем чисел λ и a 2 .

Доказательство. Рассмотрим алгоритм Евклида для нахождения наибольшего общего делителя чисел a 1 и a 2 (см. выше).

.

Из условия теоремы следует, что наибольшим общим делителем чисел a 1 и a 2 , и следовательно a n и a n+1 является 1. Т.е. a n+1 =1.

Умножим все эти равенства на λ , тогда

.

Пусть общий делитель a 1 λ и a 2 есть δ . Тогда δ входит множителем в a 1 λ , m 1 a 2 λ и в a 1 λ -m 1 a 2 λ =a 3 λ (см. "Делимость чисел",Утверждение 2). Далее δ входит множителем в a 2 λ и m 2 a 3 λ , и, следовательно, входит множителем в a 2 λ -m 2 a 3 λ =a 4 λ .

Рассуждая так мы убеждаемся, что δ входит множителем в a n−1 λ и m n−1 a n λ , и, следовательно, в a n−1 λ m n−1 a n λ =a n+1 λ . Так как a n+1 =1, то δ входит множителем в λ . Следовательно число δ является общим делителем чисел λ и a 2 .

Рассмотрим частные случаи теоремы 1.

Следствие 1. Пусть a и c простые числа относительно b . Тогда их произведение ac является простым числом относительно b .

Действительно. Из теоремы 1 ac и b имеют тех же общих делителей, что и c и b . Но числа c и b взаимно простые, т.е. имеют единственный общий делитель 1. Тогда ac и b также имеют единственный общий делитель 1. Следовательно ac и b взаимно простые.

Следствие 2. Пусть a и b взаимно простые числа и пусть b делит ak . Тогда b делит и k .

Действительно. Из условия утверждения ak и b имеют общий делитель b . В силу теоремы 1, b должен быть общим делителем b и k . Следовательно b делит k .

Следствие 1 можно обобщить.

Следствие 3. 1. Пусть числа a 1 , a 2 , a 3 , ..., a m простые относительно числа b . Тогда a 1 a 2 , a 1 a 2 ·a 3 , ..., a 1 a 2 a 3 ···a m , произведение этих чисел простое относительно числа b .

2. Пусть имеем два ряда чисел

таких, что каждое число первого ряда простое по отношению каждого числа второго ряда. Тогда произведение

Требуется найти такие числа, которые делятся на каждое из этих чисел.

Если число делится на a 1 , то оно имеет вид sa 1 , где s какое-нибудь число. Если q есть наибольший общий делитель чисел a 1 и a 2 , то

где s 1 - некоторое целое число. Тогда

является наименьшим общим кратным чисел a 1 и a 2 .

a 1 и a 2 взаимно простые, то наименьшее общее кратное чисел a 1 и a 2:

Нужно найти наименьшее общее кратное этих чисел.

Из вышеизложенного следует, что любое кратное чисел a 1 , a 2 , a 3 должно быть кратным чисел ε и a 3 , и обратно. Пусть наименьшее общее кратное чисел ε и a 3 есть ε 1 . Далее, кратное чисел a 1 , a 2 , a 3 , a 4 должно быть кратным чисел ε 1 и a 4 . Пусть наименьшее общее кратное чисел ε 1 и a 4 есть ε 2 . Таким образом выяснили, что все кратные чисел a 1 , a 2 , a 3 ,...,a m совпадают с кратными некоторого определенного числа ε n , которое называют наименьшим общим кратным данных чисел.

В частном случае, когда числа a 1 , a 2 , a 3 ,...,a m взаимно простые, то наименьшее общее кратное чисел a 1 , a 2 как было показано выше имеет вид (3). Далее, так как a 3 простое по отношению к числам a 1 , a 2 , тогда a 3 простое по отношению числа a 1 ·a 2 (Следствие 1). Значит наименьшее общее кратное чисел a 1 ,a 2 ,a 3 является число a 1 · a 2 ·a 3 . Рассуждая аналогичным образом мы приходим к следующим утверждениям.

Утверждение 1. Наименьшее общее кратное взаимно простых чисел a 1 , a 2 , a 3 ,...,a m равен их произведению a 1 ·a 2 ·a 3 ···a m .

Утверждение 2. Любое число, которое делится на каждое из взаимно простых чисел a 1 , a 2 , a 3 ,...,a m делится также на их произведение a 1 ·a 2 ·a 3 ···a m .

Но многие натуральные числа делятся нацело ещё и на другие натуральные числа.

Например :

Число 12 делится на 1, на 2, на 3, на 4, на 6, на 12;

Число 36 делится на 1, на 2, на 3, на 4, на 6, на 12, на 18, на 36.

Числа, на которые число делится нацело (для 12 это 1, 2, 3, 4, 6 и 12) называются делителями числа . Делитель натурального числа a - это такое натуральное число, которое делит данное число a без остатка. Натуральное число, которое имеет более двух делителей, называется составным .

Обратите внимание, что числа 12 и 36 имеют общие делители. Это числа: 1, 2, 3, 4, 6, 12. Наибольший из делителей этих чисел - 12. Общий делитель двух данных чисел a и b - это число, на которое делятся без остатка оба данных числа a и b .

Общим кратным нескольких чисел называется число, которое делится на каждое из этих чисел. Например , числа 9, 18 и 45 имеют общее кратное 180. Но 90 и 360 - тоже их общие кратные. Среди всех jбщих кратных всегда есть наименьшее, в данном случае это 90. Это число называется наименьшим общим кратным (НОК) .

НОК всегда натуральное число, которое должно быть больше самого большого из чисел, для которых оно определяется.

Наименьшее общее кратное (НОК). Свойства.

Коммутативность:

Ассоциативность:

В частности, если и — взаимно-простые числа , то:

Наименьшее общее кратное двух целых чисел m и n является делителем всех других общих кратных m и n . Более того, множество общих кратных m, n совпадает с множеством кратных для НОК(m, n ).

Асимптотики для могут быть выражены через некоторые теоретико-числовые функции.

Так, функция Чебышёва . А также:

Это следует из определения и свойств функции Ландау g(n) .

Что следует из закона распределения простых чисел.

Нахождение наименьшего общего кратного (НОК).

НОК(a, b ) можно вычислить несколькими способами:

1. Если известен наибольший общий делитель , можно использовать его связь с НОК:

2. Пусть известно каноническое разложение обоих чисел на простые множители:

где p 1 ,...,p k — различные простые числа, а d 1 ,...,d k и e 1 ,...,e k — неотрицательные целые числа (они могут быть нулями, если соответствующее простое отсутствует в разложении).

Тогда НОК (a ,b ) вычисляется по формуле:

Другими словами, разложение НОК содержит все простые множители , входящие хотя бы в одно из разложений чисел a, b , причём из двух показателей степени этого множителя берётся наибольший.

Пример :

Вычисление наименьшего общего кратного нескольких чисел может быть сведено к нескольким последовательным вычислениям НОК от двух чисел:

Правило. Чтобы найти НОК ряда чисел, нужно:

— разложить числа на простые множители;

— перенести во множители искомого произведения самое большое разложение (произведение множителей самого большого числа из заданных), а потом добавить множители из разложения других чисел, которые не встречаются в первом числе или стоят в нем меньшее число раз;

— полученное произведение простых множителей будет НОК заданных чисел.

Любые два и более натуральных чисел имеют свое НОК. Если числа не кратны друг другу или не имеют одинаковых множителей в разложении, то их НОК равно произведению этих чисел.

Простые множители числа 28 (2, 2, 7) дополнили множителем 3 (числа 21), полученное произведение (84) будет наименьшим числом, которое делится на 21 и 28 .

Простые множители наибольшего числа 30 дополнили множителем 5 числа 25, полученное произведение 150 больше самого большого числа 30 и делится на все заданные числа без остатка. Это наименьшее произведение из возможных (150, 250, 300...), которому кратны все заданные числа.

Числа 2,3,11,37 — простые, поэтому их НОК равно произведению заданных чисел.

Правило . Чтобы вычислить НОК простых чисел, нужно все эти числа перемножить между собой.

Еще один вариант:

Чтобы найти наименьшее общее кратное (НОК) нескольких чисел нужно:

1) представить каждое число как произведение его простых множителей, например:

504 = 2 · 2 · 2 · 3 · 3 · 7 ,

2) записать степени всех простых множителей:

504 = 2 · 2 · 2 · 3 · 3 · 7 = 2 3 · 3 2 · 7 1 ,

3) выписать все простые делители (множители) каждого из этих чисел;

4) выбрать наибольшую степень каждого из них, встретившуюся во всех разложениях этих чисел;

5) перемножить эти степени.

Пример . Найти НОК чисел: 168, 180 и 3024.

Решение . 168 = 2 · 2 · 2 · 3 · 7 = 2 3 · 3 1 · 7 1 ,

180 = 2 · 2 · 3 · 3 · 5 = 2 2 · 3 2 · 5 1 ,

3024 = 2 · 2 · 2 · 2 · 3 · 3 · 3 · 7 = 2 4 · 3 3 · 7 1 .

Выписываем наибольшие степени всех простых делителей и перемножаем их:

НОК = 2 4 · 3 3 · 5 1 · 7 1 = 15120.

Кратное число – это число, которое делится на данное число без остатка. Наименьшее общее кратное (НОК) группы чисел – это наименьшее число, которое делится без остатка на каждое число группы. Чтобы найти наименьшее общее кратное, нужно найти простые множители данных чисел. Также НОК можно вычислить с помощью ряда других методов, которые применимы к группам из двух и более чисел.

Шаги

Ряд кратных чисел

    Посмотрите на данные числа. Описанный здесь метод лучше применять, когда даны два числа, каждое из которых меньше 10. Если даны большие числа, воспользуйтесь другим методом.

    • Например, найдите наименьшее общее кратное чисел 5 и 8. Это небольшие числа, поэтому можно использовать данный метод.
  1. Кратное число – это число, которое делится на данное число без остатка. Кратные числа можно посмотреть в таблице умножения..

    • Например, числами, которые кратны 5, являются: 5, 10, 15, 20, 25, 30, 35, 40.
  2. Запишите ряд чисел, которые кратны первому числу. Сделайте это под кратными числами первого числа, чтобы сравнить два ряда чисел.

    • Например, числами, которые кратны 8, являются: 8, 16, 24, 32, 40, 48, 56, и 64.
  3. Найдите наименьшее число, которое присутствует в обоих рядах кратных чисел. Возможно, вам придется написать длинные ряды кратных чисел, чтобы найти общее число. Наименьшее число, которое присутствует в обоих рядах кратных чисел, является наименьшим общим кратным.

    • Например, наименьшим числом, которое присутствует в рядах кратных чисел 5 и 8, является число 40. Поэтому 40 – это наименьшее общее кратное чисел 5 и 8.

    Разложение на простые множители

    1. Посмотрите на данные числа. Описанный здесь метод лучше применять, когда даны два числа, каждое из которых больше 10. Если даны меньшие числа, воспользуйтесь другим методом.

      • Например, найдите наименьшее общее кратное чисел 20 и 84. Каждое из чисел больше 10, поэтому можно использовать данный метод.
    2. Разложите на простые множители первое число. То есть нужно найти такие простые числа, при перемножении которых получится данное число. Найдя простые множители, запишите их в виде равенства.

      • Например, 2 × 10 = 20 {\displaystyle {\mathbf {2} }\times 10=20} и 2 × 5 = 10 {\displaystyle {\mathbf {2} }\times {\mathbf {5} }=10} . Таким образом, простыми множителями числа 20 являются числа 2, 2 и 5. Запишите их в виде выражения: .
    3. Разложите на простые множители второе число. Сделайте это так же, как вы раскладывали на множители первое число, то есть найдите такие простые числа, при перемножении которых получится данное число.

      • Например, 2 × 42 = 84 {\displaystyle {\mathbf {2} }\times 42=84} , 7 × 6 = 42 {\displaystyle {\mathbf {7} }\times 6=42} и 3 × 2 = 6 {\displaystyle {\mathbf {3} }\times {\mathbf {2} }=6} . Таким образом, простыми множителями числа 84 являются числа 2, 7, 3 и 2. Запишите их в виде выражения: .
    4. Запишите множители, общие для обоих чисел. Запишите такие множители в виде операции умножения. По мере записи каждого множителя зачеркивайте его в обоих выражениях (выражения, которые описывают разложения чисел на простые множители).

      • Например, общим для обоих чисел является множитель 2, поэтому напишите 2 × {\displaystyle 2\times } и зачеркните 2 в обоих выражениях.
      • Общим для обоих чисел является еще один множитель 2, поэтому напишите 2 × 2 {\displaystyle 2\times 2} и зачеркните вторую 2 в обоих выражениях.
    5. К операции умножения добавьте оставшиеся множители. Это множители, которые не зачеркнуты в обоих выражениях, то есть множители, не являющиеся общими для обоих чисел.

      • Например, в выражении 20 = 2 × 2 × 5 {\displaystyle 20=2\times 2\times 5} зачеркнуты обе двойки (2), потому что они являются общими множителями. Не зачеркнут множитель 5, поэтому операцию умножения запишите так: 2 × 2 × 5 {\displaystyle 2\times 2\times 5}
      • В выражении 84 = 2 × 7 × 3 × 2 {\displaystyle 84=2\times 7\times 3\times 2} также зачеркнуты обе двойки (2). Не зачеркнуты множители 7 и 3, поэтому операцию умножения запишите так: 2 × 2 × 5 × 7 × 3 {\displaystyle 2\times 2\times 5\times 7\times 3} .
    6. Вычислите наименьшее общее кратное. Для этого перемножьте числа в записанной операции умножения.

      • Например, 2 × 2 × 5 × 7 × 3 = 420 {\displaystyle 2\times 2\times 5\times 7\times 3=420} . Таким образом, наименьшее общее кратное 20 и 84 равно 420.

    Нахождение общих делителей

    1. Нарисуйте сетку как для игры в крестики-нолики. Такая сетка представляет собой две параллельные прямые, которые пересекаются (под прямым углом) с другими двумя параллельными прямыми. Таким образом, получатся три строки и три столбца (сетка очень похожа на значок #). Первое число напишите в первой строке и втором столбце. Второе число напишите в первой строке и третьем столбце.

      • Например, найдите наименьшее общее кратное чисел 18 и 30. Число 18 напишите в первой строке и втором столбце, а число 30 напишите в первой строке и третьем столбце.
    2. Найдите делитель, общий для обоих чисел. Запишите его в первой строке и первом столбце. Лучше искать простые делители, но это не является обязательным условием.

      • Например, 18 и 30 – это четные числа, поэтому их общим делителем будет число 2. Таким образом, напишите 2 в первой строке и первом столбце.
    3. Разделите каждое число на первый делитель. Каждое частное запишите под соответствующим числом. Частное – это результат деления двух чисел.

      • Например, 18 ÷ 2 = 9 {\displaystyle 18\div 2=9} , поэтому запишите 9 под 18.
      • 30 ÷ 2 = 15 {\displaystyle 30\div 2=15} , поэтому запишите 15 под 30.
    4. Найдите делитель, общий для обоих частных. Если такого делителя нет, пропустите два следующих шага. В противном случае делитель запишите во второй строке и первом столбце.

      • Например, 9 и 15 делятся на 3, поэтому запишите 3 во второй строке и первом столбце.
    5. Разделите каждое частное на второй делитель. Каждый результат деления запишите под соответствующим частным.

      • Например, 9 ÷ 3 = 3 {\displaystyle 9\div 3=3} , поэтому запишите 3 под 9.
      • 15 ÷ 3 = 5 {\displaystyle 15\div 3=5} , поэтому запишите 5 под 15.
    6. Если нужно, дополните сетку дополнительными ячейками. Повторяйте описанные действия до тех пор, пока у частных не будет общего делителя.

    7. Обведите кружками числа в первом столбце и последней строке сетки. Затем выделенные числа запишите в виде операции умножения.

      • Например, числа 2 и 3 находятся в первом столбце, а числа 3 и 5 находятся в последней строке, поэтому операцию умножения запишите так: 2 × 3 × 3 × 5 {\displaystyle 2\times 3\times 3\times 5} .
    8. Найдите результат умножения чисел. Так вы вычислите наименьшее общее кратное двух данных чисел.

      • Например, 2 × 3 × 3 × 5 = 90 {\displaystyle 2\times 3\times 3\times 5=90} . Таким образом, наименьшее общее кратное 18 и 30 равно 90.

    Алгоритм Евклида

    1. Запомните терминологию, связанную с операцией деления. Делимое – это число, которое делят. Делитель – это число, на которое делят. Частное – это результат деления двух чисел. Остаток – это число, оставшееся при делении двух чисел.

      • Например, в выражении 15 ÷ 6 = 2 {\displaystyle 15\div 6=2} ост. 3:
        15 – это делимое
        6 – это делитель
        2 – это частное
        3 – это остаток.