Квантовая теория. Квантовая теория поля Что такое теория поля


Этот очевидно вызванный измерением коллапс волновой функции стал источником множества концептуальных трудностей в квантовой механике. До коллапса нет никакого способа наверняка сказать, где окажется фотон; он может быть в любом месте с ненулевой вероятностью. Нет никакого способа проследить траекторию фотона от источника к детектору. Фотон нереален в том смысле, в котором реален самолет, летящий из Сан-Франциско в Нью-Йорк.

Вернер Гейзенберг, среди прочих, интерпретировал эту математику так, что реальность не существует, пока не наблюдается. «Идея объективного реального мира, мельчайшие частицы которого существуют объективно в таком же смысле, в котором существуют камни или деревья, вне зависимости от того, наблюдаем мы за ними или нет, - невозможна», писал он. Джон Уилер также использовал вариант эксперимента с двойной щелью, чтобы заявить, что «ни одно элементарное квантовое явление не будет явлением, пока не станет зарегистрированным («наблюдаемым», «доподлинно записанным») явлением».

Но квантовая теория совершенно не дает никаких подсказок к тому, что считать «измерением». Она просто постулирует, что измерительное устройство должно быть классическим, не определяя, где лежит эта грань между классическим и квантовым, и оставляя открытой дверцу для тех, кто считает, что коллапс вызывает человеческое сознание. В прошлом мае Генри Стапп и его коллеги заявили, что эксперимент с двойной щелью и его современные варианты свидетельствуют о том, что «сознательный наблюдатель может быть необходимым», чтобы наделять смыслом квантовую сферу, и что в основе материального мира лежит трансперсональный разум.

Но эти эксперименты не являются эмпирическим доказательством таких утверждений. В эксперименте с двойной щелью, выполненном с одиночными фотонами, можно лишь проверить вероятностные предсказания математики. Если вероятности всплывают в процессе досылания десятков тысяч идентичных фотонов через двойную щель, теория утверждает, что волновая функция каждого фотона схлопнулась - благодаря нечетко определенному процессу под названием измерение. Вот и все.

Кроме того, существуют другие интерпретации эксперимента с двойной щелью. Взять, например, теорию де Бройля-Бома, в которой говорится, что реальность - это и волна, и частица. Фотон направляется к двойной щели с определенным положением в любой момент и проходит через одну щель или другую; следовательно, у каждого фотона есть траектория. Она проходит через пилотную волну, которая проникает через обе щели, интерферирует и затем направляет фотон в место конструктивной интерференции.

В 1979 году Крис Дьюдни и его коллеги из Колледжа Брикбек в Лондоне смоделировали предсказание этой теории о траекториях частиц, которые пройдут через двойную щель. За последние десять лет экспериментаторы подтвердили, что такие траектории существуют, хоть и использовали спорную методику так называемых слабых измерений. Несмотря на спорность, эксперименты показали, что теория де Бройля-Бома все еще в состоянии объяснить поведение квантового мира.

Что более важно, этой теории не нужны наблюдатели, или измерения, или нематериальное сознание.

Как не нужны и так называемым теориям коллапса, из которых следует, что волновые функции схлопываются случайным образом: чем больше число частиц в квантовой системе, тем вероятнее коллапс. Наблюдатели просто фиксируют результат. Команда Маркуса Арндта из Венского университета в Австрии проверяли эти теории, посылая все большие и большие молекулы через двойную щель. Теории коллапса предсказывают, что когда частицы материи становятся массивнее определенного порога, они больше не могут оставаться в квантовой суперпозиции и проходить через обе щели одновременно, и это уничтожает картину интерференции. Команда Арндта отправила молекулу из 800 атомов через двойную щель и все равно увидела интерференцию. Поиск порога продолжается.

У Роджера Пенроуза была собственная версия теории коллапса, в которой чем выше масса объекта в суперпозиции, тем быстрее он коллапсирует до одного состояния или другого из-за гравитационных нестабильностей. И снова, эта теория не требует наблюдателя и какого-либо сознания. Дирк Боумеестер из Калифорнийского университета в Санта-Барбаре проверяет идею Пенроуза с помощью одной из версий эксперимента с двойной щелью.

Концептуально идея заключается в том, чтобы не просто поместить фотон в суперпозицию прохождения через две щели одновременно, но и поставить одну из щелей в суперпозицию и заставить находиться в двух местах одновременно. По мнению Пенроуза, замещенная щель будет либо оставаться в суперпозиции, либо коллапсирует с фотоном на лету, что приведет к разным картинам интерференции. Этот коллапс будет зависеть от массы щелей. Боумеестер работает над этим экспериментом десять лет и, возможно, вскоре подтвердит или опровергнет заявления Пенроуза.

В любом случае, эти эксперименты показывают, что мы пока не можем делать никаких утверждений о природе реальности, даже если эти заявления хорошо подкреплены математически или философски. И учитывая то, что нейробиологи и философы разума не могут договориться о природе сознания, утверждение, что оно приводит к коллапсу волновых функций, будет преждевременным в лучшем случае и ошибочным - в худшем.

А какого мнения придерживаетесь вы? Расскажите в нашем

Основные положения квантовой теории поля: 1). Вакумное состояние. Нерелятивистская квантовая механика позволяет изучать поведение неизменного числа элементарных частиц. Квантовая теория поля учитывает рождение и поглощение или уничтожение элементарных частиц. Поэтому квантовая теория поля содержит два оператора: оператор рождения и оператор уничтожения элементарных частиц. Согласно квантовой теории поля невозможно состояние, когда нет ни поля, ни частиц. Вакуум – это поле, в своем наинизшем энергетическом состоянии. Для вакуума хар-ны не самостоятельные, наблюдаемые частицы, а виртуальные частицы, которые возникают, а через некоторое исчезают. 2.) Виртуальный механизм взаимодействия элементарных частиц. Элементарные частицы взаимодействуют с друг другом по следством полей, но если частица не изменяет своих параметров, она не может испустить или поглотить настоящий квант взаимодействия, такой энергии и импульса и на такое время и расстояние, которое определяются соотношениями ∆E∙∆t≥ħ, ∆рх∙∆х≥ħ(постоянная кванта) соотношение неопределенностей. Природа виртуальных частиц такова, что они возникнут через некоторое время, исчезают или поглощаются. Амер. Физик Фейнман разработал графический способ изображения взаимодействия элементарных частиц с виртуальными квантами:

Испускание и поглощение виртуального кванта свободной частицы

Взаимодействие двух элемен. частиц по средствам одного виртуального кванта.

Взаимодействие двух элемен. частиц по средствам двух виртуального кванта.

На данных рис. Графич. изображение частиц, но не их траекторий.

3.) Спин – является важнейшей хар-кой квантовых объектов. Это собственный момент импульса частицы и если момент импульса волчка совпадает с направление оси вращения, то спин не определяет какого- то определенного выделенного направления. Спин задает направленность, но вероятностным образом. Спин существует в форме, которой нельзя придать наглядный вид. Спин обозначается s=I∙ħ, причем I принимает как целочисленные значения I=0,1,2,…, так и получисленные значения I = ½, 3/2, 5/2,… В классической физике одинаковые частицы пространственно не различны, т.к. занимают одну и туже область пространства, вероятность нахождения частицы какой-либо области пространства определяется квадратом модуля волновой функции. Волновая функция ψ, является характеристикой всех частиц. ‌‌. соответствует симметричности волновых функций, когда частицы 1 и 2 тождественны и их состояния одинаковы. случай антисимметричности волновых функций, когда частицы 1 и 2 тождественны друг другу, но различаются по одному из квантовых параметров. Например: спином. Согласно принципу запрета Пауля, частицы, обладающие полуцелым спином, не могут находиться в одном и том же состоянии. Этот принцип позволяет описать структуру электронных оболочек атомов и молекул. Те частицы, которые обладают целым спином, называются бозонами. I =0 у Пи-мезонов; I =1 у фотонов; I = 2 у гравитонов. Частицы, обладающие получисленным спином, называются фермионами . У электрона, позитрона, нейтрона, протона I = ½. 4) Изотопический спин. Масса нейтрона всего лишь на 0,1% больше массы протона, если абстрагироваться (не учитывать) электрический заряд, то можно считать эти две частицы двумя состояниями одной и той же частицы, нуклона. Аналогично имеются - мезоны, но это не три самостоятельные частицы, а три состояния одной и той же частицы, которые называются просто Пи – мезоном. Для учета сложности или мультиплетности частиц вводится параметр, который называется изотопическим спином. Он определяется из формулы n = 2I+1, где n – число состояний частицы, например для нуклона n=2, I=1/2. Проекцией изоспина обозначаются Iз = -1/2; Iз = ½, т.е. протон и нейтрон образуют изотопический дублет. Для Пи – мезонов число состояний = 3, т. е n=3, I =1, Iз=-1, Iз=0, Iз=1. 5) Классификация частиц: важнейшей хар-кой элементарных частиц является масса покоя, по этому признаку частицы делятся на барионы (пер. тяжелый), мезоны (от греч. Средний), лептоны (от греч. легкий). Барионы и мезоны по принципу взаимодействия относятся еще к классу адронов (от греч. сильный), поскольку эти частицы участвуют в сильном взаимодействии. К барионам относятся: протоны, нейтроны, гипероны из названных частиц стабильным является только протон, все барионы – фермионы, мезоны являются бозонами, являются не стабильными частицами, участвуют во всех типах взаимодействий, так же как и барионы, к лептонам относятся: электрон, нейтрон, эти частицы являются фермионами, не участвуют в сильных взаимодействиях. Особо выделяется фотон, который не относится к лептонам, а также не относится к классу адронам. Его спин = 1, а масса покоя = 0. Иногда в особый класс выделяют кванты взаимодействия, мезон – квант слабого взаимодействия, глюон – квант гравитационного взаимодействия. Иногда в особый класс выделяют кварки, обладающие дробным электрическим зарядом равен 1/3 или 2/3 электрического заряда.6) Типы взаимодействия. В 1865 году была создана теория электромагнитного поля (Максвелла). В 1915 году была создана теория гравитационного поля Эйнштейном. Открытия сильных и слабых взаимодействий относится к первой трети 20 века. Нуклоны крепко связаны в ядре между собой сильными взаимодействиями, которые названы сильными. В 1934 году Ферме создал первую достаточно адекватную экспериментальным исследованием теорию слабых взаимодействий. Эта теория возникла после открытия радиоактивности, пришлось предположить, что в ядрах атома возникают незначительные взаимодействия, которые приводят к самопроизвольному распаду тяжелых химических элементов как уран, при этом излучаются - лучи. Ярким примером слабых взаимодействий являются проникновение частиц нейтронов сквозь землю в то время, как у нейтронов проникающая способность намного скромнее, они задерживаются свинцовым листом, толщиной нескольких сантиметров. Сильные: электромагнитные. Слабые: гравитационные = 1: 10-2: 10-10:10-38. Отличие электромаг. и гравит. Взаимодействий, в том, что они плавно убывают с увеличением расстояния. Сильные и слабые взаимодействия ограничены очень малыми расстояниями: 10-16 см для слабых, 10-13 см для сильных. Но на расстояние < 10-16 см слабые взаимодействия уже не являются малоинтенсивными, на расстоянии 10-8 см господствуют электромагнитные силы. Адроны взаимодействуют с помощью кварков. Переносчиками взаимодействия между кварками являются глюоны. Сильные взаимодействия появляются на расстояниях 10-13 см, т. Е. глюоны являются короткодействующими и способны долететь такие расстояния. Слабые взаимодействия осуществляются с помощью полей Хиггса, когда взаимодействие переносится с помощью квантов, которые называются W+,W- - бозоны, а также нейтральные Z0 – бозоны(1983 год). 7) Деление и синтез атомных ядер. Ядра атомов состоят из протонов, которые обозначаются Z и нейтронов N, общее число нуклонов обозначается буквой – А. А= Z+N. Чтобы вырвать нуклон из ядра необходимо затратить энергию, поэтому полная масса и энергия ядра меньше суммы асс и энергий всех его составляющих. Разность энергии называется энергия связи: Есв=(Zmp+Nmn-M)c2 энергия связи нуклонов ядре – Есв. Энергия связи, проходящая на один нуклон, называется удельная энергия связи (Есв/А). Максимальное значение удельная энергия связи принимает для ядер атомов железа. У элементов следующих после железа происходит нарастание нуклонов, и каждый нуклон приобретает все больше соседей. Сильные же взаимодействия являются короткодействующими, это приводит к тому, что при росте нуклонов и при значительном росте нуклонов хим. элемент стремится к распаду (естеств. радиоактивности). Запишем реакции, в которых происходит выделение энергии: 1. При делении ядер с большим числом нуклонов : n+U235→ U236→139La+95Mo+2n медленно движущийся нейтрон поглощается U235(ураном) в результате образуется U236 , который делится на 2 ядра La(лаптам) и Мо(молибден), которые разлетаются с большими скоростями и образуются 2 нейтрона, которые способны вызвать 2 такие реакции. Реакция принимает цепной хар-тер для того чтобы масса исходного топлива достигала критической массы.2. Реакция синтеза легких ядер .d2+d=3H+n, если бы люди сумели обеспечить устойчивый синтез ядер, то они избавили бы себя от энергетических проблем. Дейтерий, содержащийся в воде океана, представляет неисчерпаемый источник дешевого ядерного топлива, и синтезу легких элементов не сопутствует интенсивные радиоактивные явления, как при делении ядер урана.

Фоковского пространства, описывающие всевозможные возбуждения квантового поля. Аналогом квантовомеханической волновой функции в КТП является полевой оператор (точнее, «поле» - это операторнозначная обобщённая функция , из которой только после свёртки с основной функцией получается оператор, действующий в гильбертовом пространстве состояний), способный действовать на вакуумный вектор фоковского пространства (см. вакуум) и порождать одночастичные возбуждения квантового поля. Физическим наблюдаемым здесь также соответствуют операторы, составленные из полевых операторов [стиль! ] .

Именно на квантовой теории поля базируется вся физика элементарных частиц .

При построении квантовой теории поля ключевым моментом было понимание сущности явления перенормировки .

История зарождения

Основное уравнение квантовой механики - уравнение Шрёдингера - является релятивистски неинвариантным, что видно из несимметричного вхождения времени и пространственных координат в уравнение. В 1926 году было предложено релятивистски инвариантное уравнение для свободной (безспиновой или с нулевым спином) частицы (уравнение Клейна - Гордона - Фока). Как известно, в классической механике (включая нерелятивистскую квантовую механику) энергия (кинетическая, поскольку потенциальная предполагается нулевой) и импульс свободной частицы связаны соотношением . Релятивистское соотношение энергии и импульса имеет вид . Предполагая, что оператор импульса в релятивистском случае такой же, как и в нерелятивистской области, и используя данную формулу для построения релятивистского гамильтониана по аналогии, получим уравнение Уравнение Клейна - Гордона :

или

или, кратко, используя вдобавок естественные единицы :

, где - оператор Д’Аламбера .

Однако проблема данного уравнения заключается в том, что волновую функцию здесь сложно интерпретировать как амплитуду вероятности хотя бы потому, что - как можно показать - плотность вероятности не будет положительно определенной величиной.

Несколько иное обоснование имеет уравнение Дирака , предложенное им в 1928 году. Дирак пытался получить дифференциальное уравнение первого порядка, в котором обеспечено равноправие временной координаты и пространственных координат. Поскольку оператор импульса пропорционален первой производной по координатам, то гамильтониан Дирака должен быть линейным по оператору импульса.

и с учетом формулы связи энергии и импульса, на квадрат этого оператора налагаются ограничения, а значит и на "коэффициенты" - их квадраты должны быть равны единице и они должны быть взаимно антикоммутативны. Таким образом, это точно не могут быть числовые коэффициенты. Однако, они могут быть матрицами, причем размерности не менее 4, а "волновая функция" - четырехкомпонентным объектом, получившим название биспинора . В таком случае уравнение Дирака формально имеет вид, идентичный уравнению Шредингера (с гамильтонианом Дирака).

Однако данное уравнение, впрочем как и уравнение Клейна - Гордона, имеет решения с отрицательными энергиями. Данное обстоятельство явилось причиной для предсказания античастиц , что позже и было подтверждено экспериментально (открытие позитрона). Наличие античастиц есть следствие релятивистского соотношения между энергией и импульсом.

Одновременно к концу 20-х годов был разработан формализм квантового описания многочастичных систем (включая системы с переменным числом частиц), основанного на операторах рождения и уничтожения частиц. Квантовая теория поля оказывается также основанной на этих операторах (выражается через них).

Уравнения Клейна - Гордона и Дирака следует рассматривать как уравнения для полевых операторных функций, действующих на вектор состояния системы квантовых полей, удовлетворяющих уравнению Шрёдингера.

Сущность квантовой теории поля

Лагранжев формализм

В классической механике с помощью лагранжева формализма можно описать многочастичные системы. Лагранжиан многочастичной системы равен сумме лагранжианов отдельных частиц. В теории поля аналогичную роль может играть лагранжева плотность (плотность лагранжиана) в данной точке пространства. Соответственно лагранжиан системы (поля) будет равен интегралу от плотности лагранжиана по трехмерному пространству. Действие, как и в классической механике, предполагается равным интегралу от лагранжиана по времени. Следовательно, действие в теории поля можно рассматривать как интеграл от плотности лагранжиана по четырехмерному пространству-времени. Соответственно можно применить принцип наименьшего (стационарного) действия к этому четырехмерному интегралу и получить уравнения движения для поля - уравнения Эйлера-Лагранжа . Минимальное требование к лагранжиану (лагранжевой плотности) - релятивистская инвариантность. Второе требование - лагранжиан не должен содержать производных полевой функции выше первой степени, чтобы уравнения движения получались "правильными" (соответствовали классической механике). Есть также и иные требования (локальность, унитарность и др.). Согласно теореме Нётер инвариантность действия относительно k-параметрических преобразований, приводит к k динамическим инвариантам поля, то есть к законам сохранения. В частности инвариантность действия относительно трансляций (сдвигов) приводит к сохранению 4-импульса.

Пример: Скалярное поле c лагранжианом

Уравнения движения для данного поля приводят к уравнению Клейна-Гордона . Для решения этого уравнения полезно перейти к импульсному представлению через преобразование Фурье. Из уравнения Клейна-Гордона нетрудно видеть, что коэффициенты Фурье будут удовлетворять условию

Где - произвольная функция

Дельта-функция устанавливает связь между частотой (энергией) , волновым вектором (вектором импульса) и параметром (массой) : . Соответственно для двух возможных знаков имеем два независимых решения в импульсном представлении (интеграл Фурье)

Можно показать, что вектор импульса будет равен

Следовательно, функцию можно интерпретировать как среднюю плотность частиц с масоой , импульсом и энергией . После квантования эти произведения превращаются в операторы, имеющие целочисленные собственные значения.

Квантование поля. Операторы рождения и уничтожения квантов

Квантование означает переход от полей к операторам, действующим на вектор (амплитуду) состояния Φ . По аналогии с обычной квантовой механикой вектор состояния полностью характеризует физическое состояние системы квантованных волновых полей. Вектор состояния - это вектор в некотором линейном пространстве.

Основной постулат квантования волновых полей заключается в том, что операторы динамических переменных выражаются через операторы полей таким же образом, что и для классических полей (с учетом порядка перемножения)

Для квантового гармонического осциллятора получена известная формула квантования энергии . Собственные функции, соответствующие указанным собственным значениям гамильтониана, оказываются связанными друг с другом некоторыми операторами - повышающий оператор, - понижающий оператор. Следует отметить, что эти операторы некоммутативны (их коммутатор равен единице). Применение повышающего или понижающего оператора увеличивает квантовое число n на единицу и приводит к одинаковому увеличению энергии осциллятора (эквидистантность спектра), что можно интерпретировать как рождение нового или уничтожение кванта поля с энергией . Именно такая интерпретация позволяет использовать вышеприведенные операторы, как операторы рождения и уничтожения квантов данного поля. Гамильтониан гармонического осциллятора выражается через указанные операторы следующим образом , где - оператор числа квантов поля. Как нетрудно показать - то есть, собственные значения этого оператора - число квантов. Любое n-частичное состояние поля может быть получено действием операторов рождения на вакуум

Для вакуумного состояния результат применения оператора уничтожения равен нулю (это можно принять за формальное определение вакуумного состояния).

В случае N осцилляторов гамильтониан системы равен сумме гамильтонианов индивидуальных осцилляторов. Для каждого такого осциллятора можно определить свои операторы рождения . Следовательно произвольное квантовое состояние такой системы может быть описано с помощью чисел заполнения - количества операторов данного сорта k, действующих на вакуум:

Такое представление называют представлением чисел заполнения . Суть данного представления заключается в том, чтобы вместо задания функции функции от координат (координатное представление) или как функцию от импульсов (импульсное представление), состояние системы характеризуется номером возбужденного состояния - числом заполнения.

Можно показать, что, например, скалярное поле Клейна-Гордона может быть представлено как совокупность осцилляторов. Разлагая полевую функцию в бесконечный ряд Фурье по трехмерному вектору импульса можно показать, что из уравнения Клейна-Гордона следует, что амплитуды разложения удовлетворяют классическому дифференциальному уравнению второго порядка для осциллятора с параметром (частотой) . Рассмотрим ограниченный куб и наложим условие периодичности по каждой координате с периодом .Условие периодичности приводит к квантованию допустимых импульсов и энергии осциллятора:

Операторы поля, операторы динамических переменных

Фоковское представление

Квантование по Бозе-Эйнштейну и Ферми-Дираку. Связь со спином.

Коммутационные соотношения Бозе-Эйнштейна основаны на обычном коммутаторе (разность "прямого" и "обратного" произведения операторов), а коммутационные соотношения Ферми-Дирака - на антикоммутаторе (сумма "прямого" и "обратного" произведения операторов). Кванты первых полей подчиняются статистике Бозе-Эйнштейна и называются бозонами , а кванты вторых подчиняются статистике Ферми-Дирака и называются фермионами . Квантование полей по Бозе-Эйнштейну оказывается непротиворечивым для частиц с целым спином, а для частиц с полуцелым спином непротиворечивым оказывается квантование по Ферми-Дираку. Таким образом, фермионы являются частицами с полуцелым спином, а бозоны - с целым.

S-матричный формализм. Диаграммы Фейнмана

Проблема расходимостей и пути их решения

Аксиоматическая квантовая теория поля

См. также

Литература

  • Квантовая теория поля - Физическая энциклопедия (гл. редактор А. М. Прохоров).
  • Ричард Фейнман , «Характер физических законов» - М., Наука, 1987 г., 160 с.
  • Ричард Фейнман, «КЭД - странная теория света и вещества» - М., Наука, 1988 г., 144 с.
  • Боголюбов Н. Н. , Ширков Д. В. Введение в теорию квантованных полей . - М .: Наука, 1984. - 600 с.
  • Вентцель Г. Введение в квантовую теорию волновых полей. - М .: ГИТТЛ, 1947. - 292 с.
  • Ициксон К., Зюбер Ж.-Б. Квантовая теория поля. - М .: Мир, 1984. - Т. 1. - 448 с.
  • Райдер Л. Квантовая теория поля. - М .: Мир, 1987. - 512 с.
Основные разделы
Общая (физическая) акустика Геометрическая акустика Психоакустика Биоакустика Электроакустика Гидроакустика Ультразвуковая акустика Квантовая акустика (акустоэлектроника) Акустическая фонетика (Акустика речи)
Прикладная акустика Архитектурная акустика (Строительная акустика) Аэроакустика Музыкальная акустика Акустика транспорта Медицинская акустика Цифровая акустика
Смежные направления Акустооптика
Прикладная физика Физика плазмы Физика атмосферы Лазерная физика Физика ускорителей
Связанные науки Агрофизика Физическая химия Математическая физика Космология Астрофизика Геофизика Биофизика Метрология Материаловедение
См. также

Физика дает нам объективное понимание окружающего мира, а ее законы абсолютны и действуют на всех людей без исключения, невзирая на социальный статус и лица.

Но такое понимание указанной науки было не всегда. В конце XIX столетия были сделаны первые несостоятельные шаги к созданию теории излучения черного физического тела на основе законов классической физики. Из законов данной теории следовало, что вещество обязано отдавать определенные электромагнитные волны при любой температуре, снижать амплитуду до абсолютного нуля и терять свои свойства. Другими словами, тепловое равновесие между излучением и конкретным элементом было невозможно. Однако такое утверждение находилось в противоречии с реальным повседневным опытом.

Более детализировано и понятно квантовую физику можно пояснить следующим образом. Существует определение абсолютно черного тела, которое способно поглощать электромагнитное излучение любого спектра волны. Длина его излучения определяется только его температурой. В природе не может быть абсолютно черных тел, которые соответствуют непрозрачному замкнутому веществу с отверстием. Любой кусок элемента при нагревании начинает светиться светится, а при дальнейшем повышении градуса окрашивается сначала красным, а затем - белым. Цвет от свойств вещества практически не зависит, для абсолютно черного тела он характеризуется исключительно его температурой.

Замечание 1

Следующим этапом в развитии квантовой концепции было учение А. Эйнштейна, которое известно под гипотезой Планка.

Данная теория дала возможность ученому объяснить все закономерности уникального фотоэффекта, не укладывающиеся в пределы классической физики. Сущность указанного процесса заключается в исчезновении вещества под воздействием быстрых электронов электромагнитного излучения. Энергия испускаемых элементов не зависит от коэффициента поглощаемого излучения и определяется его характеристиками. Однако от насыщенности лучей зависит количество испускаемых электронов

Многократные эксперименты вскоре подтвердили учение Эйнштейна, причем не только с фотоэффектом и светом, но и с рентгеновскими и гамма-лучами. Эффект А. Комптона, который был найден в 1923 году, представил общественности новые факты существования неких фотонов посредством расположения упругого рассеяния электромагнитных излучений на свободных, малых электронах, сопровождаемые повышением диапазона и длины волны.

Квантовая теория поля

Данное учение позволяет определить процесс внедрения квантовых систем в рамки, называемых в науке степеней свободы, предполагающих определенное количество независимых координат, которые крайне важны для обозначения общего движения механической концепции.

Простыми словами, эти показатели являются основными характеристиками движения. Стоит отметить, что интересные открытия в сфере гармоничного взаимодействия элементарных частиц сделал исследователь Стивен Вайнберг, который открыл нейтральный ток, а именно принцип взаимосвязи между лептонами и кварками. За свое открытие в 1979-ом году физик стал лауреатом Нобелевской премии.

В квантовой теории атом состоит из ядра и конкретного облака электронов. Основа данного элемента включает в себя практически всю массу самого атома - более 95 процентов. Ядро обладает исключительно положительным зарядом, определяющий химический элемент, частью которого является сам атом. Самым необычным в строение атома является то, что ядро хоть и составляет почти всю его массу, но содержит всего одну десятитысячную его объема. Из этого следует, что плотного вещества в атоме действительно очень мало, а все остальное пространство занимает электронное облако.

Интерпретации квантовой теории - принцип дополнительности

Стремительное развитие квантовой теории привело к кардинальному изменению классических представлений о таких элементах:

  • структуре материи;
  • движении элементарных частиц;
  • причинности;
  • пространстве;
  • времени;
  • характере познания.

Такие перемены в сознании людей способствовали коренной трансформации картины мира в более четкое понятие. Для классической интерпретации материальной частицы было свойственно внезапное выделение из окружающей среды, наличие собственного движения и конкретное месторасположение в пространстве.

В квантовой теории элементарная частица стала представляться как важнейшая часть системы, в которую она была включена, однако при этом не имела собственных координат и импульса. В классическом познании движения предлагался перенос элементов, которые оставались тождественными сами себе, по заранее спланированной траектории.

Неоднозначный характер деления частицы обусловил надобность отказа от такого видения движения. Классический детерминизм уступил лидирующую позицию статистическому направлению. Если ранее все целое в элементе воспринималось как общее количество составляющих частей, то квантовая теория определила зависимость отдельных свойств атома от системы.

Классическое понимание интеллектуального процесса было напрямую связано с пониманием материального предмета как полноценно существующего самого по себе.

Квантовая теория продемонстрировала:

  • зависимость знания об объекте;
  • самостоятельность исследовательских процедур;
  • завершенность действий на ряде гипотез.

Замечание 2

Смысл этих концепций изначально был далеко не ясен, а поэтому основные положения квантовой теории всегда получали разное истолкование, а также разнообразные интерпретации.

Квантовая статистика

Параллельно с развитием квантовой и волновой механики стремительно развивались другие составные элементы квантовой теории - статистика и статистическая физика квантовых систем, которые включали в себя огромное количество частиц. На базе классических методов движения конкретных элементов была создана теория поведения их целостности- классическая статистика.

В квантовой статистике полностью отсутствует вероятность различить две частицы одинаковой природы, так как два состояния этой нестабильной концепции отличаются друг от друга только перестановкой частиц идентичной мощности влияний на сам принцип тождественности. Этим квантовые системы в основном и отличаются от классических научных систем.

Важным итогом в открытии квантовой статистики считается положение о том, что каждая частица, которая входит в какую-либо систему, не тождественна такому же элементу. Отсюда следует значимость задачи определения специфики материального предмета в конкретном сегменте систем.

Отличие квантовой физики от классической

Итак, постепенный отход квантовой физики от классической состоит в отказе от того, чтобы объяснять происходящие во времени и пространстве индивидуальные события, и применении статистического способа с его волнами вероятности.

Замечание 3

Целью классической физики является описание отдельных объектов в определенной сфере и формирование законов, управляющих изменением этих предметов во времени.

Квантовая физика в глобальном понимании физических идей занимает особое место в науке. К числу самых запоминающихся созданий человеческого ума относится теория относительности – общая и специальная, которая представляет собой абсолютно новую концепцию направлений, объединяющую электродинамику, механику и теорию тяготения.

Квантовая теория смогла окончательно разорвать связи с классическими традициями, создав новый, универсальный язык и необычный стиль мышления, позволяющий ученым проникнуть в микромир с его энергетическими составляющими и дать его полное описание посредством введения специфик, отсутствовавших в классической физике. Все эти методы в конечном итоге позволили более детализировано понять сущность всех атомных процессов, и вместе с тем именно эта теория внесла в науку элемент случайности и непредсказуемости.

Наши старания описать реальность — не более, чем игра в кости с попыткой предсказать необходимый результат? Джеймс Оуэн Уэзералл, профессор логики и философии науки университета Ирвин, поразмышлял на страницах Nautil.us о загадках квантовой физики, проблеме квантового состояния и о том, насколько оно зависит от наших действий, знаний и субъективного восприятия реальности, и почему, предсказывая разные вероятности, мы все оказываемся правы.

Физикам хорошо известно, как применять квантовую теорию, – ваш телефон и компьютер тому доказательства. Но знание о том, как что-то использовать, далеко от полного понимания мира, описываемого теорией, и даже от того, что означают различные математические инструменты, которые применяют ученые. Одним из таких математических инструментов, о статусе которого физики уже долго спорят, является «квантовое состояние»Квантовое состояние - любое возможное состояние, в котором может находиться квантовая система. В данном случае под «квантовым состоянием» также следует понимать все потенциальные вероятности выпадения того или иного значения при игре в «кости». — Прим. ред. .

Одной из самых поразительных особенностей квантовой теории является то, что ее предсказания вероятностны. Если вы проводите эксперимент в лаборатории и используете квантовую теорию для предсказания результатов различных измерений, в лучшем случае теория может только предсказать вероятность результата: например, 50% за предсказанный результат и 50% за то, что он будет иным. Роль квантового состояния – определить вероятность результатов. Если квантовое состояние известно, вы можете рассчитать вероятность получения любого возможного результата для любого возможного эксперимента.

Представляет ли квантовое состояние объективный аспект реальности или является всего лишь способом характеризовать нас, то есть то, что человек знает о реальности? Этот вопрос активно обсуждался в самом начале изучения квантовой теории и недавно вновь стал актуальным, вдохновив на новые теоретические подсчеты и последовавшие за ними экспериментальные проверки.

«Если изменить лишь только ваши знания, вещи перестанут казаться странными».

Для того чтобы понять, почему квантовое состояние иллюстрирует чьи-то знания, представьте случай, в котором вы вычисляете вероятность. Прежде чем ваш друг бросит игральные кости, вы предполагаете, какой стороной они упадут. Если ваш друг бросает обычную шестигранную кость, вероятность того, что ваше предположение окажется верным, будет равна примерно 17% (одна шестая), что бы вы ни загадали. В этом случае вероятность говорит кое-что о вас, а именно о том, что вы знаете об игральном кубике. Предположим, вы повернулись спиной во время броска, и ваш друг видит результат – пусть это будет шесть, но вам этот результат неизвестен. И пока вы не обернетесь, исход броска остается неопределенным, даже несмотря на то, что вашему другу он известен. Вероятность, представляющая человеческую неуверенность, даже если реальность определена, называется эпистемной , от греческого слова «знание».

Это означает, что вы и ваш друг могли определить разные вероятности, при этом ни один из вас не ошибется. Вы скажете, что вероятность выпадения шестерки на кубике равна 17%, а ваш друг, уже знакомый с результатом, назовет ее равной 100%. Это связано с тем, что вам и другу известны разные вещи, и названные вами вероятности представляют разную степень вашего знания. Единственным неверным предсказанием было бы такое, которое исключает возможность выпадения шестерки вообще.

В течение последних пятнадцати лет физиков волновал вопрос, может ли квантовое состояние оказаться эпистемным таким же образом. Предположим, некоторое состояние материи, например, распределение частиц в пространстве или результат игры в кости, определенно, но вам не известно. Квантовое состояние, согласно такому подходу, является всего лишь способом описания неполноты ваших знаний об устройстве мира. В разных физических ситуациях может быть несколько способов определить квантовое состояние в зависимости от известной информации.

Читайте также:

Соблазнительно думать о квантовом состоянии таким образом из-за того, что при измерении параметров физической системы оно становится другим. Проведение измерений меняет это состояние из такого, где каждый возможный исход имеет ненулевую вероятность, до того, где возможен лишь один исход. Это похоже на то, что происходит при игре в кости, когда вы узнаете выпавший результат. Может показаться странным, что мир может измениться просто из-за того, что вы проводите измерения. Но если происходит всего лишь изменение ваших знаний, это больше не удивляет.

Еще одной причиной полагать квантовое состоянием эпистемным является то, что с помощью единственного эксперимента невозможно определить, каким было квантовое состояние до его проведения. Это тоже напоминает игру в кости. Предположим, ваш друг предлагает поиграть и утверждает, что вероятность выпадения шестерки равна всего 10%, тогда как вы настаиваете на 17%. Может ли один единственный эксперимент показать, кто из вас прав? Нет. Дело в том, что выпавший результат сопоставим с обеими оценками вероятности. Нет никакой возможности понять, кто из вас двоих прав в каждом конкретном случае. Согласно эпистемному подходу к квантовой теории, причина, по которой невозможно экспериментально определить большинство квантовых состояний, подобна игре в кости: для каждой физической ситуации есть несколько вероятностей, согласуемых с множественностью квантовых состояний.

Роб Спеккенс, физик из института теоретической физики (Ватерлоо, Онтарио), опубликовал в 2007 году научную работу, где представил «игрушечную теорию», разработанную для имитации квантовой теории. Эта теория не совсем аналогична квантовой, так как упрощена до предельно простой системы. Система имеет всего два варианта каждого из ее параметров: например, «красный» и «синий» для цвета и «верх» и «низ» для положения в пространстве. Но, как и в случае квантовой теории, она включала состояния, которые можно использовать для вычисления вероятности. И предсказания, сделанные с ее помощью, совпадают с предсказаниями квантовой теории.

«Игрушечная теория» Спеккенса была волнующей, поскольку, как и в квантовой теории, ее состояния были «не определяемы» — и эта неопределенность полностью объяснялась тем, что эпистемная теория действительно имеет отношение к реальным физическим ситуациям. Другими словами, «игрушечная теория» была подобна квантовой, и ее состояния были однозначно эпистемными. Так как в случает отказа от эпистемного взгляда неопределенность квантовых состояний не имеет чёткого объяснения, Спеккенс и его коллеги посчитали это достаточным основанием для того, чтобы считать квантовые состояния также эпистемным, но в этом случае «игрушечная теория» должна быть распространена на более сложные системы (т.е. на физические системы, объясняемые квантовой теорией). С тех пор она повлекла за собой ряд исследований, в которых одни физики пытались объяснить с ее помощью все квантовые явления, а другие – показать ее ошибочность.

«Эти предположения непротиворечивы, но это не значит, что они верны».

Таким образом, противники теории поднимают руки выше. Например, один широко обсуждаемый результат 2012 года, опубликованный в Nature Physics, показал, что если один физический эксперимент может быть проведен независимо от другого, тогда не может быть никакой неопределенности по поводу «правильного» квантового состояния, описывающего этот эксперимент. Т.о. все квантовые состояния являются «правильными» и «верными», за исключением тех, которые совершенно «нереальны», а именно: «неверными» являются состояния вроде тех, когда вероятность выпадения шестерки равна нулю.

Другое исследование, опубликованное в Physical Review Letters в 2014 Джоанной Баррет и другими, показало, что модель Спеккенса нельзя применить для системы, в которой каждый параметр имеет три или более степени свободы – например, «красный», «синий» и «зеленый» для цвета, а не просто «красный» и «синий» — без нарушений предсказаний квантовой теории. Сторонники эпистемного подхода предлагают эксперименты, которые могли бы показать разницу между предсказаниями квантовой теории и предсказаниями, сделанными любым эпистемным подходом. Таким образом, все проведенные эксперименты в рамках эпистемного подхода могли бы в какой-то степени согласовываться со стандартной квантовой теорией. В связи с этим нельзя интерпретировать все квантовые состояния как эпистемные, так как квантовых состояний больше, а эпистемные теории покрывают только часть квантовой теории, т.к. они дают результаты, отличные от результатов квантовой.

Исключают ли эти результаты идею о том, что квантовое состояние указывает на характеристики нашего разума? И да, и нет. Аргументы против эпистемного подхода являются математическими теоремами, доказанными по особой структуре, применяемой для физических теорий. Разработанная Спеккенсом как способ объяснения эпистемного подхода, эта структура содержит несколько фундаментальны допущений. Одно из них заключается в том, что мир всегда находится в объективном физическом состоянии, не зависимом от наших знаний о нем, которое может совпасть, а может не совпасть с квантовым состоянием. Другое заключается в том, что физические теории делают предсказания, которые могут быть представлены с использованием стандартной теории вероятности. Эти предположения непротиворечивы, но это не означает, что они верны. Результаты показывают, что в такой системе не может быть результатов, эпистемичных в том же смысле, что и «игрушечная теория» Спеккенса, пока она согласует с квантовой теорией.

Можно ли на этом поставить точку, зависит от вашего взгляда на систему. Здесь мнения расходятся.

Например, Оуэе Марони, физик и философ Оксфордского университета и один из авторов статьи, опубликованной в 2014 в Physical Review Letters, в электронном письме сказал, что «наиболее правдоподобные пси-эпистемические модели» (т.е. те, которые можно приспособить к системе Спеккенса) исключаются. Также Мэтт Лейфер, физик университета Шампани, написавший много работ по эпистемичному подходу к квантовом состояниям, сказал, что вопрос был закрыт еще в 2012 — если вы, конечно, согласны принимать независимость исходных состояний (к чему Лейфер и склоняется).

Спеккенс более бдителен. Он соглашается с тем, что эти результаты сильно ограничивают применение эпистемного подхода к квантовым состояниям. Но он подчеркивает, что эти результаты получены внутри его системы, и как создатель системы он указывает на ее ограничения, такие, как допущения по поводу вероятности. Таким образом, эпистемный подход к квантовым состояниям остается уместным, но если это так, то нам необходимо пересмотреть основные допущения физических теорий, которые многие физики принимают без вопросов.

Тем не менее, очевидно, что в фундаментальных вопросах квантовой теории произошел существенный прогресс. Многие физики склонны называть вопрос о значении квантового состояния просто интерпретационным или, хуже того, философским, но лишь до тех пор, пока им не приходится разрабатывать новый ускоритель частиц или совершенствовать лазер. Называя проблему «философской», мы словно выносим ее за переделы математики и экспериментальной физики.

Но работа над эпистемным подходом показывает неправомерность этого. Спеккенс и его коллеги взяли интерпретацию квантовых состояний и превратили ее в точную гипотезу, которая затем наполнилась математическими и экспериментальными результатами. Это не значит, что сам по себе эпистемный подход (без математики и экспериментов) мертв, это значит, что его защитникам нужно выдвигать новые гипотезы. И это бесспорный прогресс – как для ученых, так и для философов.

Джеймс Оуэн Уэзералл — профессор логики и философии науки университета Ирвин, Калифорния. Его последняя книга «Странная физика пустоты» рассматривает историю изучения структуры пустого пространства в физике с 17 века до наших дней.