Как движутся фотоны. Фотоны


Фотон. Строение фотона. Принцип перемещения.

Часть 1. Исходные данные.

Часть 1. Исходные данные.

1.1. Фотон - это элементарная частица, квант электромагнитного излучения.

1.2. Фотон не может быть разделен на несколько частей и не распадается спонтанно в вакууме.

1.3. Фотон является истинно электронейтральной частицей. Скорость перемещения (движения) фотона в вакууме равна «с».

1.4. Свет представляет собой поток локализованных частиц - фотонов.

1.5 . Фотоны излучаются во многих природных процессах, например: при движении заряженных частиц с ускорением (тормозное, синхротронное, циклотронное излучения) или при переходе электрона из возбуждённого состояния в состояние с меньшей энергией. Это происходит в результате основного фундаментального превращения в Природе - превращения кинетической энергии заряженной частицы в электромагнитную (и наоборот).

1.6. Фотону свойственен корпускулярно-волновой дуализм:

С одной стороны фотоны демонстрирует свойства волны в явлениях дифракции и интерференции при масштабах, сравнимых с длиной волны фотона;

С другой стороны фотон ведет себя как частица, которая излучается или поглощается целиком объектами, размеры которых много меньше его длины волны (например, атомными ядрами) или считаются точечными (электрон).

1.7. Учитывая тот факт, что одиночные фотоны демонстрирует свойства волны, вполне достоверно можно утверждать, что фотон представляет собой «миниволну» (отдельный, компактный«кусочек» волны). При этом должны учитываться следующие свойства волн:

а) э лектромагнитные волны(и фотон) - это поперечные волны, в которых векторы напряженности электрических (E) и магнитных (H) полей колеблются перпендикулярно направлению распространения волны.Электромагнитные волны (фотон) можно передать от источника к приёмнику, в том числе и через вакуум. Им не требуется среда для своего распространения.

б) половина энергии электромагнитных волн (и фотона) является магнитной.

в) для характеристики интенсивности волнового процесса используют три параметра: амплитуда волнового процесса, плотность энергии волнового процесса и плотность потока энергии.

1.8. Кроме того, при рассмотрении схемы строения фотона и принципа его перемещения были учтены следующие данные:

а) излучение фотона практически проходит за период времени порядка 10 -7 сек - 10 -15 сек. За этот период электромагнитное поле фотона возрастает от нуля до максимума и вновь падает до нуля. См. рис.1.

б) график изменения поля фотона никак не может быть куском обрезанной синусоиды, т.к. в местах обрезки возникали бы бесконечные силы;

в) поскольку частота электромагнитной волны - это величина, которая наблюдается в опытах, то эту же частоту (и длину волны) можно приписать и отдельному фотону. Поэтому параметры фотона, как и волны, описываются формулой E = h* f , где h - постоянная Планка, которая связывает величину энергии фотона с его частотой ( f ).

Рис. 1. Фотон является материальной частицей и представляет собой компактный (имеющий начало и конец), неделимый «кусочек» волны, у которой электромагнитные поля возрастает от нуля до некоторого максимума и вновь падают до нуля. Магнитные поля условно не показаны.

Часть 2. Основные принципы строения фотона.

2.1. Практически во всех статьях по электромагнитным волнам (фотонам) на рисунках описывается и графическипоказывается волна, состоящая из двух полей - электрического и магнитного, например, цитата: «Электромагнитное поле представляет собой совокупность электрического магнитного полей...». Однако существование «двухкомпонентной» электромагнитной волны (и фотона) невозможно по одной простой причине: однокомпонентного электрического и однокомпонентного магнитного поля в электромагнитной волне (фотоне) не существует и существовать не может. Объяснение:

а) существуют теоретические модели-формулы-законы, которые используются для расчетов или определения параметров в идеальных условиях (например - теоретическая модель идеального газа). Это вполне допустимо. Однако для расчетов в реальных условиях в эти формулы вводятся поправочные коэффициенты, которые отражают реальные параметры среды.

б) также существует теоретическая модель под названием «электрическое поле». Для решения теоретических задач это допустимо. Однако реально существуют только два электрических поля: электрическое поле-плюс (№1) и электрическое поле-минус (№2). Субстанции под названием «беззарядовое? электронейтральное? электрическое поле №3» в реальности не существует, и существовать не может. Поэтому, при моделировании реальных условий в теоретической модели под названием «электрическое поле» всегда необходимо учитывать два «поправочных коэффициента» - реальное электрическое поле-плюс и реальное электрическое поле-минус.

в) существует теоретическая модель под названием «магнитное поле». Это вполне допустимо для решения некоторых задач. Однако реально у магнитного поля всегда существуют два магнитных полюса: полюс №1 (N) и полюс №2 (S). Субстанции под названием «бесполюсное? магнитное поле №3» в реальности не существует и существовать не может.Поэтому, при моделировании реальных условий в теоретической модели под названием «магнитное поле» всегда необходимо учитывать два «поправочных коэффициента» - полюс-N и полюс-S.

2.2. Таким образом, учитывая вышесказанное можно сделать вполне однозначный вывод: фотон является компактной (имеющий начало и конец), материальной частицей, у которой материя представляет собой совокупность двух электрических (плюс-минус) и двух магнитных (N-S) полей, способных распространяться от своих источников без затуханий (в вакууме) на сколь угодно большие расстояния. См. рис.2.



Рис.2. Фотон представляет собой совокупность двух электрических полей (плюс и минус) и двух магнитных полей (N и S). При этом полностью соблюдается общая электронейтральность фотона. В данной работе принимается, что электрическое поле-минус стыкуется с магнитным полем-N, а электрическое поле-плюс стыкуется с магнитным полем-S.

Часть 3. Квант энергии и квант массы.

3.1. С одной стороны фотон представляет собой компактную, неделимую частицу, у которой электромагнитные поля возрастает от нуля до некоторого максимума и вновь падают до нуля. То есть фотон имеет вполне реальный линейный размер (начало и конец).

3.2. Однако с другой стороны параметры фотона, как и волны, описываются формулой E = h* f , где h - постоянная Планка (эВ*сек), элементарный квант действия (фундаментальная мировая константа), которая связывает величину энергии фотона с его частотой ( f ).

3.3. Это позволяет полагать, что все фотоны состоят из вполне определенного количества (n) «самостоятельных» электронейтральных «усреднённых» элементарных квантов энергии (эВ) с абсолютно одинаковой длиной волны ( L ). В этом случае энергия любого фотона равна: Е = е 1 *n, где (е 1 ) - энергия элементарного кванта, (n) - их количество в фотоне. См. рис.3.



Рис.3.

а) «нормальный» фотон (электромагнитные поля возрастает от нуля до некоторого максимума и вновь падают до нуля);

б) тот же фотон из «усреднённых» квантов. Можно допустить, что любой фотон состоит из вполне определенного количества абсолютно одинаковых «усреднённых» элементарных квантов энергии;

в) элементарный «усреднённый» квант энергии фотона. Элементарный квант энергии (размерность - эВ) абсолютно одинаков для всех электромагнитных волн всех диапазонов и аналогичен элементарному кванту действия Планка, (размерность - эВ*сек). В этом случае: Е (эВ) = h* f = е 1 *n.

3.4. Материя фотона. Фотоны излучаются в результате основного фундаментального превращения в Природе - превращение кинетической энергии заряженной частицы в электромагнитную и наоборот - превращение электромагнитной энергии фотонов в кинетическую энергию заряженной частицы. Однако кинетическая энергия нематериальна, а электромагнитная энергия фотона обладает всеми свойствами материи. Таким образом: в результате основного фундаментального превращения в Природе нематериальная кинетическая энергия заряженной частицы преобразуется в энергию электрических и магнитных полей фотона, который обладает вполне реальными свойствами материи: импульсом, скоростью, массой и др. характеристиками. Поскольку фотон материален, то материальны и все составляющие его части. То есть: элементарный квант энергии автоматически является элементарным квантом массы.

3.5. Любой фотон состоит из вполне определенного количества «самостоятельных» электронейтральных элементарных квантов энергии. И рассмотрение схемы строения элементарного кванта показывает, что:

а) элементарный квант невозможно разделить на две равные части, поскольку это автоматически будет являться нарушением закона сохранения заряда;

б) от элементарного кванта также невозможно «отрезать» более мелкую часть, поскольку это автоматически приведет к изменению значения постоянной Планка (фундаментальной константы) для этого кванта.

3.6. Следовательно:

Первое. Превращение электромагнитной энергии фотонов в кинетическую энергию заряженной частицы не может быть непрерывной функцией - электромагнитная энергия может превращаться в кинетическую энергию частиц (и наоборот) только при значениях энергии кратных одному элементарному кванту энергии.

Второе. Поскольку оболочки кварков, протонов, нейтронов и др. частиц представляют собой уплотнённую электронейтральную материю фотонов, то массы этих оболочек также имеет значения, кратные элементарному кванту массы.

3.7. Примечание: тем не менее, разделение элементарных квантов на две абсолютно равные части (положительную и отрицательную) вполне возможно (и происходит) при образовании электрон-позитронных пар. В этом случае масса электрона и позитрона имеет значения, кратные половине элементарного кванта массы (см. « Электрон. Образование и строение электрона. Магнитный монополь электрона»).

Часть 4. Основные принципы перемещения фотона.

4.1. Перемещение материального фотона-частицы может осуществляться только двумя способами:

Вариант-1: фотон перемещается по инерции;

Вариант-2: фотон является самодвижущейся частицей.

4.2. По неизвестным причинам, именно инерционное движение электромагнитных волн (и фотонов) либо подразумевается, либо упоминается и графически показывается практически во всех статьях по электромагнитным волнам, например: Wikipedia. Electromagnetic radiation. English. См. рис.4.


Рис.4. Пример инерционного перемещения фотона (Wikipedia. Electromagnetic radiation). Фотон перемещается мимо наблюдателя слева направо со скоростью V = «с». При этом все лепестки синусоиды не меняют своих параметров, то есть: в системе отсчёта фотона они абсолютно неподвижны.

4.3. Однако инерционное движение фотона невозможно, например, по следующей причине: при прохождении фотона сквозь препятствие (стекло) его скорость уменьшается, но после прохождения препятствия (одного или нескольких) фотон вновь «мгновенно» и восстанавливает свою скорость до «с» = const. При инерциальном движении такое самостоятельное восстановление скорости невозможно.

4.4. «Мгновенный» набор скорости фотоном (до «с» = const) после прохождения препятствия возможен только при условии, если сам фотон является самодвижущейся частицей. При этом механизмом самопередвижения фотона может являться только переполюсовка имеющихся в наличии электрических (плюс и минус) и магнитных (N и S) полей с одновременным смещением фотона на полпериода, то есть с удвоенной частотой (2* f ). См. рис.5.


Рис.5. Схема перемещения фотона за счёт переполюсовки полей. «Фрагмент» - последовательность переполюсовки поля-плюс.

4.5. Объяснение механизма перемещения фотона основывалось на следующих данных:

а) электромагнитное поле фотона представляет собой совокупность переменных электрических (плюс-минус) и магнитных (N и S) полей;

б) электрические и магнитные поля фотона не могут исчезнуть - они могут только превращаться друг в друга. Порождение магнитного поля переменным электрическим полем является фундаментальным явлением природы;

в) магнитное поле появляется только при наличии изменяющегося во времени электрического поля и наоборот (всякое изменение электрического поля возбуждает магнитное поле и, в свою очередь, изменение магнитного поля возбуждает поле электрическое). Поэтому магнитные поля фотона могут возникнуть только при наличии у фотона переменных по знаку иизменяющихся во времени электрических полей (в системе отсчёта фотона).

4.6. При объяснении механизма переполюсовки фотона рассматривались следующие варианты:

а) наличие свободного пространства впереди фотона. Фотон представляет собой компактный, неделимый «кусочек» волны в виде синусоиды, у которой электромагнитные поля возрастает от нуля до некоторого максимума и вновь падают до нуля. То есть: «тело» фотона имеет вполне реальную геометрическую длину (начало и конец). Движение фотона происходит за счёт перемещения фотона на расстояние одного полупериода (1/2L) за каждый акт переполюсовки. И это перемещение всегда может происходить только в одну сторону (вперед), где перед фотоном имеется в наличии свободное пространство;

б) «Борьба противоположностей». Электромагнитное поле фотона представляет собой совокупность переменных электрических (плюс-минус) и магнитных (N и S) полей. В данной работе принимается, что электрическое поле-минус стыкуется с магнитным полем-N, а электрическое поле-плюс стыкуется с магнитным полем-S. Но в этом случае возникает постоянное (и законное) стремление магнитных полей N и S состыковаться друг с другом, то есть создать полноценный «двухполюсной магнит». Для этого одно из магнитных полей обязано сдвинуться на полпериода. Однако магнитные и электрическими поля «намертво» связаны между собой, и всякая попытка магнитного поля «освободится» от электрического поля «мгновенно» приводит к ответной реакции противодействия - вызывает переполюсовку (переброску) всех полей и их автоматическое смещение на полпериода.

4.7. Поскольку других вариантов объяснения механизма самопередвижения фотона не просматривается, то перемещение фотона за счёт переполюсовки полей, по-видимому, является единственным решением проблемы. Ибо только режим переполюсовки позволяет поддерживать режим самодвижения фотона и одновременно обеспечить соблюдение фундаментального закона Природы - порождение магнитного поля при наличии переменного по знаку и меняющегося во времени электрического поля (и наоборот). Предложенные варианты механизма переполюсовки (причин и последовательности) требуют дополнительных проработок, которые в данной работе не могут быть представлены. Тем не менее, приведенные объяснения являются приемлемым выходом из создавшейся ситуации в решении проблемы постоянства скорости света, поскольку позволяют с той или иной степенью достоверности объяснить механизм самопередвижения фотона.

4.8. Скорость фотона. Скорость (с) электромагнитных волн (фотонов) в вакууме, их частота ( f ) и длина волны (L ) жестко связаны формулой: с = f * L . Однако при этом следует иметь в виду, что перемещение фотона происходит за счёт одновременной переполюсовки его электрических и магнитных полей, во время которой фотон смещается на расстояние одного полупериода (L/2) за каждый акт переполюсовки, то есть с удвоенной частотой. С учётом этого формула скорости будет иметь вид с =2 f * L /2, что абсолютно идентично основной формуле: с = f * L .

5. Таким образом:

5.1. Фотон является локализованной (компактной) материальной частицей, у которой материя представляет собой совокупность двух электрических (плюс и минус) и двух магнитных (N и S) полей, значения которых возрастают от нуля до некоторого максимума и вновь падают до нуля. При этом полностью соблюдается общая электронейтральность фотона.

5.2. В результате основного фундаментального превращения в Природе нематериальная кинетическая энергия заряженной частицы преобразуется в материальную энергию электрических и магнитных полей фотона. Фотон материален и состоит из вполне определенного количества абсолютно одинаковых «усреднённых» элементарных квантов энергии, которые автоматически являются элементарными квантами массы.

5.3. Фотон является самодвижущейся частицей способной перемещаться от своего источник на сколь угодно большие расстояния (в вакууме). Ему не требуется среда для своего перемещения. Движение фотона происходит за счёт переполюсовки переменных электрических (плюс-минус) и магнитных (N и S) полей, во время которой фотон смещается на расстояние одного полупериода за каждый акт переполюсовки.

5.4. В данной работе принимается, что в каждом элементарном кванте электрическое поле-минус стыкуется с магнитным полем-N, а электрическое поле-плюс стыкуется с магнитным полем-S. Другие варианты стыковки полей требуют дополнительных проработок и в данной работе не рассматривались.

Фотон является безмассовой частицей и способен существовать только в вакууме. Также он не имеет никаких электрических свойств, то есть его заряд равен нулю. В зависимости от контекста рассмотрения существует различные трактовки описания фотона. Классическая (электродинамика) представляет его как электромагнитную волну, имеющую круговую поляризацию. Также фотон проявляет свойства частицы. Такое двойственное представление о нем называется корпускулярно-волновым дуализмом. С другой стороны, квантовая электродинамика описывает частицу фотона как калибровочный бозон, позволяющий формировать электромагнитное взаимодействие.

Среди всех частиц Вселенной фотон имеет максимальную численность. Спин (собственный механический момент) фотона равен единице. Также фотон может находиться только в двух квантовых состояния, одно из которых имеет проекцию спина на определенное направление, равную -1, а другое – равную +1. Данное квантовое свойство фотона отражается в его классическом представлении как поперечность электромагнитной волны. Масса покоя фотона равна нулю, из чего следует его скорость распространения, равная скорости света.

Частица фотона не имеет электрических свойств (заряда) и достаточно стабильна, то есть фотон не способен самопроизвольно распадаться в вакууме. Данная частица излучается во многих физических процессах, например, при движении электрического заряда с ускорением, а также энергетических скачках ядра атома или самого атома из одного состояния в другое. Также фотон способен поглощаться при обратных процессах.

Корпускулярно-волновой дуализм фотона

Корпускулярно-волновой дуализм, свойственный фотону, проявляется в многочисленных физических экспериментах. Фотонные частицы участвуют в таких волновых процессах, как дифракция и интерференция, когда размеры препятствий (щелей, диафрагм) сравнимы с размером самой частицы. Особенно это ярко заметно в опытах с дифракцией одиночных фотонов на единственной щели. Также точечность и корпускулярность фотона проявляется в процессах поглощения и излучения объектами, размеры которых гораздо меньше длины волны фотона. Но с другой стороны, представление фотона как частицы тоже не является полноценным, ибо оно опровергается корреляционными экспериментами, основанными на запутанных состояниях элементарных частиц. Поэтому принято рассматривать частицу фотона, в том числе, и как волну.

Видео по теме

Источники:

  • Фотон 1099: всё о машине

Главное квантовое число - это целое число , которое является определением состояния электрона на энергетическом уровне. Энергетический уровень – это набор стационарных состояний электрона в атоме с близкими значениями энергии. Главное квантовое число определяет удаленность электрона от ядра, и характеризует энергию электронов, которые этот уровень занимают.

Совокупность чисел, которые характеризуют состояние , называются квантовыми числами. Волновую функцию электрона в атоме, его уникальное состояние определяют четыре квантовых числа – главное, магнитное, орбитальное и сплин – момент движения элементарной , выраженный в количественном значении. Главное квантовое число имеет n .Если главное квантовое число увеличивается, то соответственно увеличивается и орбита, и энергия электрона. Чем меньше значение n, тем больше значение энергетического взаимодействия электрона . Если суммарная энергия электронов является минимальной, то состояние атома называется невозбужденным или основным. Состояние атома с высоким значением энергии называется возбужденным. На уровне самое большое число электронов можно определить формулой N = 2n2.Когда случается переход электрона с одного энергетического уровня на другой, изменяется и главное квантовое число .В квантовой теории утверждение, что энергия электрона квантуется, то есть может принимать лишь дискретные, определенные значения. Чтобы знать состояние электрона в атоме необходимо учитывать энергию электрона, форму электронного и других параметров. Из области натуральных чисел, где n может быть равно 1 и 2, и 3 и так далее, главное квантовое число может принимать какое угодно значение. В квантовой теории энергетические уровни обозначают буквами, значение n - числами. Номер периода, где находится элемент, равен числу энергетических уровней в атоме, находящемся в основном состоянии. Все энергетические уровни состоят из подуровней. Подуровень состоит из атомных орбиталей, которые определяются, характеризуются главным квантовым число м n, орбитальным число м l и квантовым число м ml. Число подуровней каждого уровня не превышает значение n.Волновое уравнение Шредингера является самым удобным электронного строения атома.

Квантовая физика стала огромным толчком для развития науки в XX веке. Попытка описать взаимодействие мельчайших частиц совершенно иным образом, с помощью квантовой механики, когда некоторые проблемы классической механики уже казались неразрешимыми, произвела настоящую революцию.

Причины возникновения квантовой физики

Физика – , описывающая законы, по которым функционирует мир. Ньютоновская, или классическая возникла еще в Средние века, а ее предпосылки можно было видеть в древности. Она отлично объясняет все, что происходит на масштабах, воспринимаемых человеком без дополнительных измерительных приборов. Но люди столкнулись с множеством противоречий, когда начали изучать микро- и макромир, исследовать как мельчайшие частицы, из которых состоит вещество, так и гигантские галактики, окружающие родной человеку Млечный путь. Оказалось, что классическая физика подходит не для всего. Именно так появилась квантовая физика – наука, квантово-механические и квантово-полевые системы. Технические приемы для изучения квантовой физики – это квантовая механика и квантовая теория поля. Они также используются и в других, смежных разделах физики.

Основные положения квантовой физики, в сравнении с классической

Тем, кто только знакомится с квантовой физикой, ее положения нередко кажутся нелогичными или даже абсурдными. Однако, вникая в них глубже, проследить логику уже гораздо проще. Проще всего узнавать основные положения квантовой физики, сравнивая ее с классической.

Если в классической считается, что природа неизменна, какими бы способами ученые ее ни описывали, то в квантовой физике результат наблюдений будет очень сильно зависеть от того, каким способом измерения пользоваться.

Согласно законам механики Ньютона, которые являются основой классической физики, частица (или материальная точка) в каждый момент времени имеет определенное положение и скорость. В квантовой механике это не так. В ее основе – принцип суперпозиции расстояний. То есть, если квантовая частица может пребывать в одном и в другом состоянии, то, значит, она может пребывать и в третьем состоянии – сумме двух предыдущих (это называется линейная комбинация). Поэтому нельзя точно определить, где будет находиться частица в определенный момент времени. Можно лишь вычислить вероятность ее пребывания где бы то ни было.

Если в классической физике можно построить траекторию движения физического тела, то в квантовой – только распределение вероятностей, которое будет изменяться во времени. При этом максимум распределения всегда находится там, где его определяет классическая механика! Это очень важно, так как позволяет, во-первых, проследить связь между классической и квантовой механикой, а во-вторых, показывает, что они не противоречат друг другу. Можно сказать, что классическая физика является частным случаям квантовой.

Вероятность в классической физике появляется, когда исследователю неизвестны какие-то свойства объекта. В квантовой физике вероятность фундаментальна и присутствует всегда, независимо от степени незнания.

В классической механике допускаются любые значения энергии и скорости для частицы, а в квантовой – только определенные значения, «квантованные». Их называют собственными значениями, каждому из которых соответствует собственное состояние. Квант – это «порция» какой-либо величины, которую нельзя разделить на составляющие.

Один из фундаментальных принципов квантовой физики – Принцип неопределенности Гейзенберга. Речь в нем идет о том, что никак не получится одновременно выяснить и скорость, и положение частицы. Измерить можно только лишь что-то одно. Причем, чем лучше прибор измерит скорость частицы, тем меньше будет известно о ее положении, и наоборот.

Дело в том, что для того, чтобы частицу измерить, нужно на нее «посмотреть», то есть, отправить в ее сторону частицу света – фотон. Этот фотон, про который исследователю все известно, столкнется с измеряемой частицей и изменит свои и ее свойства. Это примерно то же самое, что измерять скорость движущегося автомобиля, посылая другой автомобиль с известной скоростью ему навстречу, а потом, по изменившейся скорость и траектории второго автомобиля исследовать первый. В квантовой физике исследуются настолько малые объекты, что даже фотоны – частицы света – изменяют их свойства.

В.В.Мантуров

О РАЗМЕРЕ ФОТОНОВ

Показано, что говорить о размере фотона резонно только тогда, когда фотон представляют тороидальным (бубликом). О том, как определить размер бублика, дискуссий не наблюдалось. Оказалось, однако (неожиданным для автора с сентября-октября 2012г), что фотоны, возникающие при сходе волн де Бройля, например, со свободного электрона - их родителя и носителя, по энергоемкости на два-три порядка выше тех фотонов, которые высвечиваются в спектрах в результате излучении электроном возбужденного атома (в частности) водорода. Похоже, так было задумано?

Ответ на вопрос, каков размер фотона, и прост и не очень. Начнем с того, что для волн радиочастотного диапазона речь о размере фотона бессодержательна.

Во-первых, фотон как электромагнитная по природе волна и такой же природы радиоволна отличаются друг от друга не только длинами и, соответственно, частотами и обретенными ими энергиями, но также и структурой, обусловленной физическим механизмом возникновения ,.

В самом деле, излучения радиоволнового диапазона возникают при разрядах тока между двумя электродами разрядника (линейные молнии относятся к безэлектродным). И распространяются радиально в стороны от оси вибратора Герца, разрядника или осциллятора. Всё множество плоскостей поляризации таких радиоволн определяется направлением оси разрядника, «память» о которой они сохраняют.

Во-вторых, распространяясь в пространстве, они, радиоволны, приобретают как бы сферическую форму. Хотя на самом деле они «рождаются» также бубликами. (Всё это похоже на то, как изменяется форма воздушного шарика от первоначальной, исходной, когда его надувают или накачивают.) В отличие от воздушного шарика, размер радиоволновых бубликов, трансформирующихся в почти сферу, растет со скоростью света, причем безгранично. Поэтому их «теоретически» представляют плоскими монохроматическими.

Что касается фотонов не более сантиметровых длин волн, то они, и, прежде всего, и навсегда – бублики, тороиды постоянного размера. Так как в размере фотона заложена длина его электромагнитной волны, следовательно, и частоты. И так как фотон – это волна де Бройля, покинутая электроном (заряженной частицей) или покинувшая его ,. А волна де Бройля (ВДБ) возникает, рождается с началом движения заряженной частицы. Она, ВДБ, формируется в виде тороида (бублика), в дырке которого находится заряженная частица, электрон - ее родитель и носитель. ВДБ «сидит» на электроне, сопровождая его в движении. И лишь когда ВДБ и ее родитель и носитель покидают друг друга, то их продолжением становится фотон, который наследует направление движения и электрона и ВДБ. Таким образом, мы видим, что в отличие от радиоволн, в возникновении и ВДБ и фотона никакой, ни простой, ни самый гениально придуманный осциллятор абсолютно никакого участия не принимает. Природа поступила просто, прагматично и рационально: она не стала снабжать осциллятором каждый фотон. Она ограничилась тем, что каждая ВДБ и каждый фотон самодостаточны: обладают однозначной длиной волны . Отсюда и однозначный размер фотона. Поэтому их не надо снабжать осцилляторами. Ведь это только человеку потребовалось знать еще и частоту фотона. Так пусть он ее и вычисляет, поскольку длина и частота волны связаны однозначно через скорость света. Таким образом, второе и существенное отличие ВДБ и фотонов от родственных им по природе радиоволн состоит в том, что фотоны и ВДБ в осцилляторах не нуждаются .

Так думалось до последнего времени и думалось правильно, но не во всех случаях, как оказалось, этим Природа и ограничилась (см. ниже).

В-третьих. Фотоны и ВДБ не только не распространяются радиально, но сохраняют свой размер в течение всего времени преодоления вселенских расстояний. Это обусловлено тем, что в их «устройстве» Природой заложен стягивающий механизм, эффект «обруча». Этот эффект не был известен физикам, как и то, что основой этого стягивающего эффекта является своего рода «стержень» (четвертое отличие) в виде кванта магнитного потока. Магнитное поле в нем исчисляется тысячами Тесла (напомним: П.Л.Капице удалось с помощью взрыва достичь около 50 Тесла).

Именно этими особенностями (есть и другие) фотон и похож на корпускулу, как бы на частицу. Выходит, что такое образование электромагнитной волны в виде бублика с таким квантом магнитного потока – это ни что иное, как частица. И все-таки это не частица, а волна в виде тороидального солитона, в основе которого всегда содержится один квант магнитного потока, заключенный (стянутый) множеством поверхностных циркуляций векторного потенциала. Поэтому и магнитное, и электрическое поле и ВДБ, и фотона всегда перпендикулярны друг другу что подтверждает электродинамику Максвелла. Более полно различия между ВДБ и фотонами, с одной стороны, и волнами радиодиапазона, с другой стороны, показаны в ,.

Все солитоны в большей или меньшей (цунами) степени похожи на корпускулы. Среда, из которой они изваяны, не истекает из их объема, а сохраняется. Это еще одно отличие. Посмотрите на кольца дыма, выдыхаемых искусным курильщиком, или исторгаемых из ящика Вуда, или из жерла вулкана Этна.

Отступление . И может быть, только в «теле» цунами, распространяющемся радиально от места возникновения , масса (объем) обретенной воды, хотя теоретически и сохраняется, но зато вследствие изменения размера (2πR, где R – расстояние от источника образования цунами) уменьшается, худеет толщина «бублика». Цунами в декабре 2004 года был рожден длинным (больше 100 км) линейным разломом и потому обрушил свою, не успевшую «похудеть» толщину линейной части «бублика», а, следовательно, и всю почти первоначальную разрушительную мощь на густо населенные берега Индонезии. Оно, цунами, и двигалось в виде почти прямого отрезка «бублика», и не теряло своей энергии, распространяясь на километры вглубь берега, суши, и наносило разрушающие удары, как жесткий и упругий резиновый вал, сохраняющий в значительной степени в силу линейности диаметр-толщину бублика.

Фотон движется или распространяется плашмя (перпендикулярно) к вектору своей скорости, т.е. вдоль оси тороида. А радиоволны, напомним, - радиально от оси разрядника. Фотон – квант энергии и квант магнитного потока, стянутого множеством циркуляций векторного потенциала к виду тороида-бублика, - это корпускулярный соленоид с четко сформированной геометрией, а, следовательно, и размером. Сразу же заявим, размер тороидального фотона представляет собою сумму двух поперечных толщин тела бублика плюс диаметр дырки , оставшейся от электрона. ВДБ не может быть без дырки и электрона в ней, так как сначала был электрон (заряженная частица). Который (заряд) начал двигаться или уже двигался.

A = (mc/e) v (1)

и ранее де Бройлем полученной длины волны его имени,

λ = (h/mv), (2)

имеем (ниже формулы пишутся без символов векторов)

λA = (hc/e) (3)

λ = (hc/eA), (4)

но в , установлено из (1) и соотношение mcv = eA = E = hν

λ = hc/(hν), (6)

где (hν) –квант энергии фотона. Раскрывать скобки в (6) не следует: здесь заложен необходимый для вычислений критерий - квант энергии фотона или ВДБ. Ведь речь идет о том, каков размер фотона, энергия которого задана (hν). Осталось чистая арифметика. Размер Z фотона и ВДБ равен

Z = 4(λ/2π) + диаметр дырки (6Z)

Приведем несколько примеров.

Пример № 1. Какова длина волны де Бройля и фотона гамма-кванта величиной 511000 эВ? Такие два гамма-кванта излучаются при так называемой аннигиляции электрона и позитрона. На самом деле происходит самая настоящая рекомбинация двух разноименных зарядов-ионов причем с сохранением самих материальных частиц, как и в рекомбинациях атомарных и молекулярных ионов. От того, что они в единственном числе и по размеру и по массе на пять и более порядков меньше, они не лишаются ионного статуса. Он не утрачивается, он сохраняется.

Теперь воспользуемся полученной нами формулой (6). Но чтобы не мучиться с числовыми вычислениями, учтем, что по Эйнштейну вся масса электрона (позитрона) при аннигиляции якобы «превращается» в энергию, в заданный нами гамма-квант 0,511 МэВ, т.е. 0,511 МэВ = m e c 2 . Подставим в знаменатель (6) именно правую часть (m e c 2) этого числового значения. Получим комптоновскую длину волны электрона

λ e = h/m е c = 2,426 310 58* 10 -10 см (7)

Но это ведь и есть волна де БРОЙЛЯ, а, значит, и фотона. А заодно и их размер (6Z).

Мы пришли к противоречию. В самом деле, известно ,, ведь, что при т.н. аннигиляции электрон и позитрон сталкиваются и образуют диполь-гантельку (е+е-), размер которой известен в виде удвоенного классического радиуса электрона

R e = e 2 /mc 2 (8)

И это - наименьшее расстояние, до которого сближаются при столкновении (рекомбинации) и остаются в этом прижатом состоянии электрон и позитрон ,,. Они как бы прильнули друг к другу.

R e = α 2 a o = 2,817 940 92 *10 -13 см, (9)

где а 0 =0,529 177 249*10 -8 см – Боровский радиус, это радиус ближайшей к ядру орбиты.

Сравнение (7) и (9) показывает, что они различаются на три порядка. А ведь в обоих случаях речь идет о рекомбинации электрона и позитрона.

В чем дело? Дело в том, что электрон и позитрон при столкновении (аннигиляции) не превращаются в энергию в виде двух гамма-квантов по 0,511 МэВ, которые при этом действительно излучаются, а образуют дипольку в виде гантельки (е+е-) с зарядами, разъединенными расстоянием (8) и (9). И она «ныряет» в море Дирака и становится одним из узлов бесконечной решетки «темной материи»,. Для того чтобы массы электрона и позитрона не превращались в энергию, у этой пары (в «бесконечном» удалении друг от друга) достаточно (точно столько, сколько нужно) кулоновской энергии, о чем и свидетельствует (8).

А в (7) приведена длина волн де Бройля и фотонов, превратившихся в гамма-кванты по 0,511МэВ. Таким образом, (9) – это размер частиц, электрона и позитрона, и дырки, которую они образуют в ВДБ и оставляют, покидая её, а (7) – длина их волн де Бройля и, соответственно, фотонов.

Интересно, а какова скорость электрона в момент столкновения с позитроном, т.е. в момент их, так называемой аннигиляции? Как известно, импульс фотона, гамма-кванта определяется по формуле

M e v = E/c (*)

Энергия нам известна: Е = 0,511 МэВ = m e c 2 Подставим в (*) и получим v = c. Подчеркнем: V = C. Электрон достиг скорости света, и его масса никак не возросла. И это подтверждается излучениями именно таких (точно 0,511 МэВ) по величине гамма-квантов многими вселенскими светилами в галактиках. Без отклонений.

Пример № 2. Известно ведь, что заряд протона таков же, как и позитрона. Возникает мысль, что комптоновская длина электрона (а это размер ВДБ) как бы соответствует такому энергетическому уровню орбитального электрона, как если бы он, падая на ядро водорода, обрел орбиту радиуса (7). Поставим ей в соответствие n = 0.

Сейчас принято считать, что главное квантовое число представляет собою последовательность целых чисел n = 1,2.3,4,5,. Мы, следовательно, и не подразумевали, что теоретически существует и n = 0. И это очень важно!!! Для сторонников идеи о гидрино.

Но электрон в атоме водорода не падает на ядро, на протон, не происходит захват электрона ядром. Почему? Да потому что Природа не могла позволить атомам водорода «аннигилировать» так же, как в выше рассмотренном случае. Атомы водорода, точнее, их ядра-протоны – строительный материал, кирпичики, из которых Природа соорудила и сооружает всё более и более сложные элементы периодической системы Менделеева. Протоны не имеют права превращаться в (p + e-) = n. Иначе не помогли бы ни Большой взрыв, ни бозоны Хиггса и ничто другое. Вселенная не возникла бы. Вселенная существует вследствие невозможности такого исхода. Предполагается, что, видимо, по этой же причине специалисты по спектропии так и не обнаружили в спектре водорода линий в диапазоне от n =1 до введенной нами n = 0. Гидрино не возникает.

Темная материя , выполняет свои электродинамические функции и не только. И очень возможно, что темная материя служит тоже своего рода строительным материалом для нуклонов и ядер. Из водорода с гелием состоят чуть ли не все сто процентов Вселенной. И все кружится в вихрях, горит звездными ядерными котлами, взрывается, черными дырами поглощается и вновь возрождается. И даже жизнь неведомо как возникает, эволюционирует, распространяется, достигает высоких интеллектуальных взлетов и вершин и тем самым поддерживается. Благодаря тому, похоже, что оптический диапазон света (и сказал БОГ: ДА БУДЕТ СВЕТ!!!) ограничен Ридбергоскими 13.6 эВ.

Пример №3. Определим величину кванта энергии волны де Бройля электрона на основной стационарной орбите атома водорода, т.е. при n = 1. Для этого воспользуемся формулами (4) или (5). Пусть будет (5)

Без найденной нами , формулы (1) не обойтись. Заменим в (1) v на v = c/137 = αс

hν = mc 2 /137 = αmc 2 (10)

А так как числитель справа в (10) соответствует кванту энергии 511 000 эВ, то получим

hν = (511000 /137)эВ (10а)

Это будет (по логарифмической линейке) примерно 3730эВ. А так как ,

A = (emc/ ћn), (11)

То при n = 2 уровень энергии электрона и его ВДБ понизится до примерно 1865эВ. Но тогда получается абсурд, полный абсурд!!!??? И повторимся. В спектре излучений атома водорода нет таких энергий. Весь спектральный диапазон атома водорода, т.е. вся энергия его ионизации составляет

R∞ = 13,605 6981 эВ. (12)

В чем дело? А давайте сравним это в частотах.

Выразим частоты (что равносильно их квантам энергии) фотонов и волн де Бройля, возникающих при сходе (покидании) ВДБ с электрона как свободно двигавшегося, так и орбитального при n = 1. Обозначим их так: ν λ .

ν λ = (с/λ) = (mce 2 /hћ) = c/2πr (13)

Легко усмотреть, что частота равна числу оборотов электрона в секунду.

Представим таким же путем и Ридберговские частоты ν∞

ν ∞ = cR = c(me 2 /4πћ 3 c) = e 2 /4πћr (14)

Отношение (13) к (14) показывает нам, что в их основах заложены принципиально различные по величине энергетические арсеналы

(ν λ / ν ∞) = 2.137 = 2/α (15)

А теперь разделим (10а) на (15) и получим энергию ионизации атома водорода 13,6 эВ.

В голове это не укладывается.

И все-таки, первый вывод таков: частоты и фотонов и ВДБ, обусловленных сходом ВДБ со свободного и находившегося в основном состоянии электрона, ее родителя и носителя (ВДБ, покинутая электроном или покинувшая его), в принципе базируются на энергетическом арсенале, который в 2.137 = 2/α раз превышает энергетику фотонов спектрального диапазона атомов водорода.

Примечание . Заглянув в Интернет на страницу «Что такое фотон?» (именно оттуда и узнал, что физиков волнует вопрос, каков размер фотона), как-то наткнулся и на статью Ф.М.Конарева «Заблуждения Нильса Бора» .

Ф.Конарев, как оказалось, столкнулся с этой несуразицей еще в 1993 году. Но не стал копать глубже, и поэтому не сумел, по-видимому, определить величину энергетической связи электрона, находящегося на нижней орбите (n = 1): «Энергия связи Е 1 электрона (c ядром - ВМ, см. ниже) в момент пребывания его на первом энергетическом уровне этого атома равна энергии ионизации Е J атома водорода, то есть Е 1 =Еj = 13,60 еV. Когда электрон поглощает фотон энергией 10,20 еV и переходит на второй энергетический уровень, энергия связи его с ядром уменьшается и становится равной 3,40 eV. Естественно, что при поглощении фотона электроном их энергии складываются, и мы обязаны записать…: 13,60 + 10,20 = 23,80 (28)».

А спектр дает 3,40 eV. Как видим, не смог он, Конарев, справиться с алогичными балансами энергий при воздействии внешнего фотона на электрон основного энергетического уровня, и пришел в «ярость».

Опустим еще ряд его теоретических выкладок и услышим гневное:

«Удивительный факт. Почти сто лет мы полагали, что электрон в атоме вращается вокруг ядра, как планета вокруг Солнца. Но закон формул спектра атома водорода …(которые он вывел, а мы их опустили, так как не согласны с исходными аспектами - ВМ) отрицает орбитальное движение электрона. Нет в этом законе энергии, соответствующей орбитальному движению электрона, а значит, и нет у него такого движения».

Поэтому Ф.Канарев и решил, что Нильс Бор заблуждался и тем самым причинил науке и человечеству ущерб. Что ж, видимо, за эти два десятилетия (с 1992г) многие читали его претензии к основателям и определенных достижений науки и мировоззрения. И также удивлялись. И автор этих строк тоже, грешным делом, попал в эту ловушку. Пока иначе ее не назовешь.

В самом деле, действуя на атом основного состояния фотоном, мы действительно полагали, что энергия этого фотона добавляется к энергии электрона, находящегося в первом, основном, состоянии. А оказалось, что это не так . Объяснить это можно: на этот энергетический уровень электрон попал не благодаря энергетическим манипуляциям в зоне спектров, не только благодаря спектральным излучениям ранее возбужденного атома водорода. Он попадает туда примерно таким же путем, как попадают планеты в логово Солнца, звезд. Допустим, планета сначала была независимой со своей кинетической энергией, а когда попала в сферу гравитации Солнца, то оказывалось, что ее, планеты, кинетической энергии недостаточно, чтобы преодолеть захватническую силу светила. И была захвачена, возможно, с некоторым избытком энергии. Так и в данном рассматриваемом случае с атомом водорода. Избыток кинетической энергии есть, но он на два порядка ниже критического.

Но как бы там не было, но аналогия здесь присутствует: атом водорода образуется из независимых друг от друга , протона-ядра и электрона с сопровождающей и сидящей на нем волной де Бройля. Причем это пара, электрон и его ВДБ, уже обладали кинетической энергией, равной

α.0,511 МэВ = ~3730 эВ

Это энергетическое состояние (уровень) электрона на орбите n = 1 недаром называют основным. Он, основной, служит почти непреодолимой границей, разделяющей зоны с уровнями n = 0,1 от зоны с уровнями n = 2,3,4,… В этих зонах принципиально различны законы формирования и существования ВДБ и фотонов. Вне спектральной зоны атома водорода кинетическая энергия электрона подчиняется закону (11), умноженному на е.

EA = (hν) = mc(e 2 / ћn) = mcv, (16)

т.е. уменьшаются обратно пропорционально главному квантовому числу, а в спектральной зоне (n = 2,3,4,…) - по закону Ридберга, т.е. (1/n 2).

Выше было показано, насколько различны арсеналы энергии, на основе которых в них происходят физические процессы образования ВДБ и фотонов (в первой зоне) и образования спектров (во второй зоне). Природа как бы отделила арсенал энергетики, предназначенный для возникновения жизни и её процветания, от арсенала энергетики неживой её части.

Если ВДБ и фотоны в основной (назовем её так для краткости) зоне формируются в виде тороида (бублика) еще до захвата свободного электрона протоном, то о форме ВДБ и фотонов в спектральной зоне - нет оснований ни настаивать на этой аналогии, ни отрицать её. Ведь получается, что по энергиям они в 2.137 раз (15) меньше, но это значит также, что их размеры по формуле (2) де Бройля и нашей (6) во столько раз обширнее. Это значит, что мы достоверно не знаем, каковы формы фотонов спектрального диапазона. Не знаем и, как в атоме происходит деление энергии и первоначального кванта магнитного потока. Физический механизм этих метаморфоз нам не известен.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

1. АЛЕНИЦИН А.Г., БУТИКОВ Е.И., КОНДРАТЬЕВ А.С. Краткий физико-математический СПРАВОЧНИК, М, «Наука», 1990;

2. Мантуров В.В. От кристаллических нуклонов и ядер к разгадке распределения простых чисел М, 2007;

3. Мантуров В.В. Ядерные силы. Предложение разгадки, Техника молодежи, 02, 2006;

4. Мантуров В.В. О векторном потенциале замолвим слово ;

Методология современной физики, возникшая на «дрожжах» теории относительности, привела к невиданному шатанию умов и к появлению на ее основе множества научных теорий, похожих больше на фантазии средневековых схоластов.

Так, например, профессор Вейник, печально известный тем, что пострадал за критику теории относительности (он просто ее высмеял), пишет в «Термодинамике» – учебнике для студентов : «...важный недостаток квантовой механики – это отсутствие руководящих идей, которые бы позволили судить о структуре частицы. В результате такая банальная элементарная частица, как фотон , попала в разряд исключительных (этому, по-видимому, способствовало то, что свет длительное время считался волной, а также формула Е = mc 2 Эйнштейна). На самом деле фотон в принципе не отличается от электрона и других элементарных частиц (об этом можно судить по фотографиям...). Достаточно было разобраться в структуре электрона или фотона, чтобы составить полное представление обо всем микромире и об управляющих ими законах. Согласно общей теории (Вейника – Н.Н.), элементарная частица – это ансамбль микрозарядов. К последним относятся: масса (субстанционы), пространство (метроны), время (хрононы), электрон, термон, постоянная Планка и т.д. Число различных элементарных частиц бесконечно велико».

Таким образом, мы видим как пространство – время, волна – частица, принцип неопределенности, эквивалент массы – энергии и другие «сущности» продолжают порождать все новых чудовищ в виде термонов, метронов, хрононов и субстанционов. Что же касается фотографии, то если бы Вейнику показали снимок ночного шоссе, он точно так же определил бы «банальность» автомашины, оставляющей след фар на фотоснимке. «Сон разума порождает чудовищ» (Гойя).

«Причину всех естественных явлений постигают при помощи соображений механического характера, в противном случае приходится отказаться от всякой надежды когда – либо и что-нибудь понять в физике». (Гюйгенс «Трактат о свете» ). Эту же мысль в разных вариантах высказывали известнейшие исследователи и мыслители разных времен: Аристотель, Галилей, Ньютон, Гук, Декарт, Даламбер, Френель, Фарадей, Гельмгольц и многие другие. Так, Максвелл в «Трактате об электричестве и магнетизме» написал: «В настоящее время мы не можем понять распространение (взаимодействия – Н.Н.) во времени иначе, чем-либо, как полет материальной субстанции через пространство, либо как состояние движения или напряжения в среде, уже существующей в пространстве... Действительно, как бы энергия не передавалась от одного тела к другому во времени, должна существовать среда или вещество, в которой находится энергия, после того как она покинула одно тело, но еще не достигла другого ... Следовательно, все эти теории (волновые, взаимодействия и электромагнетизма – Н.Н.) ведут к понятию среды, в которой имеет место распространение, и если мы примем эту среду как гипотезу, я думаю, она должна занять выдающееся место в наших исследованиях, и следует попытаться построить мысленное представление ее действия во всех подробностях; это и являлось моей постоянной целью в настоящем трактате» .

Но попытаемся теперь представить по Вейнику возникновение фотона: летел, летел «возбужденный» электрон по орбите, и вдруг от него отрывается некая «банальная сущность», которая, не имея на то никаких причин и оснований, независимо от скорости и циклической частоты электрона, приобретает свою частоту колебаний (после подсчета количества энергии, которую он должен забрать?), а массу – уж какая получится! Следствие здесь не порождено причинами, а физические соображения не подкреплены логикой и законами механики. Какие уж тут «мысленные представления» Максвелла?!

Итак, Максвелл утверждает, что энергию на расстояние можно перенести лишь двумя способами: либо вместе с веществом (массой), либо волнами через промежуточную среду. Существование якобы особого вида материи – электромагнитного поля – результат проникновения в физику ненаучного мышления. Это даже не теплород, которым достаточно успешно описывалась энергия колебания атомов и молекул вещества и, одновременно, тепловое (электромагнитное) излучение. Это просто попытка завуалировать свое незнание и бессилие перед загадкой природы.

Над этой загадкой бьются великие умы человечества, начиная с древнегреческих, древнеарабских, древнеиндийских и древнекитайских мыслителей, с Ньютона, Гука, Гюйгенса, кончая современными исследователями, которые, хотя и добились великих достижений в использовании света (лазеры и др.), однако их знания о существе света остались еще очень далеки от истинных.

Взгляды Ньютона на природу света были весьма противоречивы и непоследовательны. Хотя он и явился родоначальником истинно научного мышления, боязнь выдвижения научных гипотез без достаточного запаса экспериментальных и наблюдательных фактов привела его к другой крайности: к скованности мышления и к отсутствию последовательности в выводах. Так, его взгляды относительно взаимодействия тел на расстоянии привели его к мысли о существовании промежуточной среды; но при рассмотрении природы света он отвергает эту среду только из-за того, что «нет достаточного запаса опытов, коими законы действия этого эфира были бы точно определены и показаны».

Конечно, в его время постановка вопроса о свойствах и составе эфира была преждевременна, поскольку отсутствовали даже такие науки, как оптика, электромагнетизм, атомная и молекулярная физики и многие другие. И даже в наше время такие науки как о ядре атома и об элементарных частицах еще «плавают в тумане». Что же говорить об эфире – следующей ступени строения вещества?

Однако наблюдений, фактов, экспериментов и знаний о свойствах эфира становилось все больше, и все великие и сколько-нибудь значимые теории возникли лишь благодаря «мысленному построению его действия». Эйнштейн и Инфельд назвали его «лесами» для строительства теорий, которые можно убрать в угоду существования общего принципа относительности. Но теперь трудно себе представить, что возникли бы такие науки, как оптика и электромагнитная теория, если бы общий принцип относительности появился раньше их.

«Волновая теория победила теорию истечения Ньютона безукоризненно качественной и количественной точностью своих предсказаний» (С. Вавилов ) и не только этим. Во-первых, независимость скорости света от скорости источника нельзя объяснить теорией истечения. Ньютон как раз считал, что скорость фотонов складывается со скоростью источника. Во-вторых, теория истечения предсказывала увеличение скорости света в более плотной среде, а волновая теория Гюйгенса – уменьшение этой скорости. Прямые эксперименты по замеру скорости в плотной среде, произведенные Физо и Фуко, подтвердили волновую природу света.

Волновая теория света была подтверждена и теоретическими и экспериментальными работами Фарадея, Максвелла, Герца, Лебедева и других исследователей. Максвелл, например, в своем «Трактате...» написал: «...светоносная среда при прохождении света через нее служит вместилищем энергии. В волновой теории, развитой Гюйгенсом, Френелем, Юнгом, Грином и др., эта энергия считается частично потенциальной и частично кинетической. Потенциальная энергия считается обусловленной деформацией элементарных объемов среды, и значит, мы должны рассматривать среду как упругую. Кинетическая энергия считается обусловленной колебательным движением среды, поэтому мы должны считать, что среда имеет конечную плотность. В теории электричества и магнетизма, принятой в настоящем трактате, признается существование двух видов энергии – электростатической и электрокинетической, и предполагается, что они локализованы не только... в телах, но и в каждой части окружающего пространства... Следовательно, наша теория согласуется с волновой теорией в том, что обе они предполагают существование среды, способной стать вместилищем двух видов энергии» . При этом и Максвелл и Фарадей как люди широких научных взглядов указали на то, что эфир нужен не только для волновой теории света (электродинамизма), но и для передачи взаимодействий. Этот весьма важный аргумент игнорируется до сих пор современными исследователями как результат необходимости видеть «новое платье короля» – искривление пространства-времени.

Вот как написал об этом сказочник Андерсен: «Они выдали себя за искусных ткачей и сказали, что могут соткать такую чудесную ткань, которая отличается удивительным свойством – становится невидимой для всякого человека, который сидит не на своем месте или непроходимо глуп... «Я не глуп, – думал сановник. Значит я не на своем месте? Вот тебе раз! Однако нельзя и виду подавать!»

С. Вавилов написал: «Волновая теория торжествовала, казалось, окончательную победу... Но торжество оказалось очень преждевременным... Волновая теория оказалась беспомощной перед квантовыми законами действия света».

Мы же теперь зададимся вопросом: неужели этот единственный факт против множества других смог так резко изменить мнение ученых?! Да, присутствует дискретность излучения; да, фотон летит как монолитная частица. Но разве нет аналогичного поведения звука в воздухе? Или наоборот: разве нет поведения электромагнитных волн подобного звуку?

Герц и его последователи прекрасно увидели свойство электромагнитного излучения передавать в окружающее пространство сферические волны, не локализованные в пространстве . (Кстати, они и не квантованы, как утверждают современные светила, поскольку они – результат не перескока электронов с одной орбиты на другую, а ускоренного движения свободных электронов в проводнике). Благодаря такому свойству длинных электромагнитных волн мы смотрим телевизор и слушаем радиоприемник из любой точки сферы вокруг излучателя. Однако, как только частота электромагнитных волн переходит некоторую границу в сторону увеличения, появляется направленность излучения.

То же самое происходит и со звуком. Правда, такие свойства звука были открыты совсем недавно, в связи с получением ультразвука. Оказалось, что ультразвуковые волны имеют острую направленность и могут рассматриваться как частицы, локализованные в пространстве . Вот вам и «беспомощность волновой теории»! Оказывается, что каждый раз, когда исследователи сами беспомощны что-либо объяснить, они обвиняют в этом классическую механику.

Как показал Фейнман , законы колебаний зависят от частоты, так как от нее зависит характер процессов, протекающих в среде. Однако сам он удовлетворился лишь выводом уравнения колебаний, когда давление и температура в упругой волне меняются адиабатически. Ни один из исследователей, в том числе и Фейнман, не рассмотрели высокие частоты колебаний относительно длины свободного пробега частиц, когда процессы, происходящие при этом, приводят к поглощению тепла. В этом случае совершенно очевидно, что колебание не может распространяться сферической волной из-за распределения направлений движения отдельных частиц. Оно может быть только остро направленным, поскольку частота колебаний меньше «частоты» свободного пробега частиц.

Из аналогии со свойствами ультразвука следует вывод о том, что локальность совсем не противоречит волновой теории. Мало того, не окажется ли, что воздух ведет себя при этом как металл, и ультразвук обладает поперечными волнами?

Кроме локальности, фотоны, в отличие от радиоволн, обладают еще одним важным свойством, связанным с их происхождением: строго дозированной энергией. Это свойство фотонов связанное со строением атомов, не должно распространяться на весь спектр электромагнитных волн. И тут, тем более, постоянная Планка как характеристика энергии фотонов не должна рассматриваться в более широком смысле, как это делается на каждом шагу в физике в последнее время. К дискретности времени, пространства и массы постоянная Планка не имеет никакого отношения.

В связи со строгой дозированностью энергии фотонов возникла новая наука – квантовая механика, в которой с самого начала и до сих пор осталось несколько нерешенных вопросов. Первый: почему электроны атома, двигаясь по круговой или эллиптической орбите, не излучают фотонов, хотя испытывают при этом центростремительное ускорение? Второй: каков механизм испускания и поглощения фотонов?

Первый вопрос связан с заблуждением, которое повторяется во всех учебниках и научных трудах по квантовой механике. Так, например, у Семенченко в «Избранных главах теоретической физики» читаем: «Электроны не могут двигаться вокруг ядра продолжительное время, так как по законам классической электродинамики всякий ускоренно движущийся электрон излучает электромагнитную энергию . Вследствие этого кинетическая энергия электрона уменьшается, и в конце концов он должен упасть на ядро». А Кайгородский даже подсчитал в «Физике для всех» время падения электрона на ядро – сотые доли секунды!

Прошу посмотреть читателя на уравнение классической электродинамики Вебера, состоящее из трех слагаемых. Первое слагаемое – закон Кулона, второе – изменение силы взаимодействия в результате запаздывания потенциала, третье – это то, что относится к нашей теме излучения. Здесь мы видим, что в формулу Вебера входит скалярная величина расстояния между взаимодействующими частицами. Это означает, что при неизменном расстоянии между ядром и электроном и первая и вторая производные равны нулю. Следовательно, в этом случае должны отсутствовать запаздывание потенциала и излучение . А значит, не всякий ускоренно движущийся электрон излучает энергию. Движущийся по круговой орбите электрон не должен излучать ! Поражает, как долго осталась незамеченной столь существенная ошибка!

Решение второго вопроса было подсказано Гюйгенсом. Он предположил: «Свет возникает благодаря толчкам, которые движущиеся частицы тел наносят частицам эфира». До появления соотношения де Бройля для длин волн эта фраза Гюйгенса как бы «висела в воздухе». Соотношение де Бройля должно было стать фундаментом для исследования причин появления как самого соотношения, а как следствия волн де Бройля – появления фотонов. Однако вывод об индетерменированности квантовой механики, сделанный Борном, Гейзенбергом и Бором, а также отказ от эфира, сделанный Эйнштейном, увел физиков в сторону от этой проблемы.

Видимо, следует предположить, что волны де Бройля – реальный процесс «толчкового» движения частиц, причиной которого является неравномерность запаздывания потенциала, а фотон является отрезком локальных (остронаправленных) волн эфира, имеющих в начале и в конце немного разную частоту колебания (ширину спектральной линии), что связано с замедлением скорости электрона при перескоке его с одной устойчивой орбиты на другую.

Толчковое движение частиц как следствие неравномерности запаздывания потенциала может явиться решением еще одного из вопросов квантовой механики – существования устойчивых дискретных орбит электрона. Устойчивые орбиты являются, видимо, результатом резонанса циклических и толчковых колебаний.

Таким образом, несмотря на множественные заклинания ортодоксальных релятивистов о том, что возвращения к классической физике, к эфиру, к механическим взглядам, к причинности и к волновым представлениям света нет и быть не может, мы должны это сделать, иначе «придется отказаться от всякой надежды когда-либо и что-нибудь понять в физике»

Литература:

  1. А.И. Вейник. Термодинамика. Высшая школа, Минск, 1968, стр. 434.
  2. Х. Гюйгенс. Трактат о свете. Лейден, 1703. Пер. с лат. в сб. под ред. Г.М. Голина и С.Р. Филоновича «Классики Физической науки», Высшая школа, 1989, стр. 131-140.
  3. Дж. К. Максвелл. Трактат об электричестве и магнетизме, т. 1, 2, Оксфорд, 1873. Пер. с англ. Наука, М., 1989.
  4. И. Ньютон. Оптика или трактат об отражениях, преломлениях, изгибаниях и цветах света. Лондон, 1706. Пер. с лат. под ред. Г.С. Ландсберга, Гостехиздат, М., 1981.
  5. С.И. Вавилов. Глаз и солнце. Наука, М., 1976.
  6. Г. Герц. О весьма быстрых электрических колебаниях. Ann. der Ph., b. 31, s. 421...448. Пер. с нем. в сб. под ред. Г.М. Голина и С.Р. Филоновича «Классики Физической науки», Высшая школа, 1989.
  7. Г. Герц. Об электродинамических волнах в воздухе и их отражении. Ann. der Ph., b. 34, s. 609...623. Пер. с нем. в сб. под ред. Г.М. Голина и С.Р. Филоновича «Классики Физической науки», Высшая школа, 1989.
  8. Р. Фейнман, Р. Лейтон, М. Сэндс. Фейнмановские лекции по физике. Пер. с англ., т. 3, 4, Мир, М., 1976, стр. 391...398.
  9. В.К. Семенченко. Избранные главы теоретической физики. Просвещение, М., 1966, стр. 131.
  10. А.И. Китайгородский. Физика для всех, т. 3 (Электроны), Наука, М., 1979.

Свет и тепло, вкус и запах, цвет и информация - все это неразрывно связано с фотонами. Более того, жизнь растений, животных и человека невозможна без этой удивительной частицы.

Считается, что во Вселенной около 20 миллиардов фотонов приходится на каждый протон или нейтрон. Это фантастически огромная цифра.

Но что мы знаем об этой самой распространённой частице в окружающем нас мире?

Одни учёные считают, что скорость движения фотона равна скорости света в вакууме, т.е. примерно 300 000 км/сек и это максимально возможная скорость во Вселенной.

Другие учёные полагают, что во Вселенной достаточно примеров, в которых скорости частиц выше, чем скорость света.

Одни учёные считают, что фотон электрически нейтрален.

Другие - полагают, что фотон имеет электрический заряд (по некоторым данным, менее 10 -22 эВ/сек 2).

Одни учёные считают, что фотон является безмассовой частицей и по их мнению масса фотона в состоянии покоя равна нулю.

Другие - полагают, что у фотона есть масса. Правда, очень и очень небольшая. Этой точки зрения придерживается и ряд исследователей, по разному определяя массу фотона: менее чем 6 х 10 -16 эВ, 7 х 10 -17 эВ, 1 х 10 -22 эВ и даже 3 х 10 -27 эВ, что в миллиарды раз меньше массы электрона.

Одни учёные считают, что в соответствии с законами отражения и преломления света, фотон представляет собой частицу, т.е. корпускулу. (Евклид, Лукреций, Птолемей, И. Ньютон, П. Гассенди)

Другие (Р. Декарт, Р. Гук, Х. Гюйгенс, Т. Юнг и О. Френель), опираясь на явления дифракции и интерференции света, полагают, что фотон имеет волновую природу.

При излучении или поглощении атомными ядрами и электронами, а также при фотоэффекте фотон ведет себя как частица.

А при прохождении через стеклянную призму или небольшое отверстие в преграде фотон демонстрирует свои яркие волновые свойства.

Компромиссное решение французского ученого Луи де Бройля, в основе которого лежит корпускулярно-волновой дуализм, утверждающий, что фотоны обладают и свойствами частицы, и свойствами волны, не является ответом на этот вопрос. Корпускулярно-волновой дуализм - это лишь временная договорённость , основанная на абсолютном бессилии учёных ответить на этот крайне важный вопрос.

Конечно, эта договорённость несколько успокоила ситуацию, но не решила проблемы.

Исходя из этого, мы можем сформулировать первый вопрос , связанный с фотоном

Вопрос первый .

Фотоны - это волны или частицы? А, может быть, и то, и другое или не то и не другое?

Далее. В современной физике фотон - это элементарная частица, представляющая собой квант (порцию) электромагнитного излучения . Свет также является электромагнитным излучением и фотон принято считать переносчиком света. В нашем сознании это достаточно твердо укрепилось и фотон, прежде всего, связывают со светом.

Вместе с тем, кроме света существуют другие виды электромагнитного излучения: гамма-излучение, рентгеновское, ультрафиолетовое, видимое, инфракрасное, микроволновое и радиоизлучения. Они отличаются друг от друга длиной волны, частотой, энергией и имеют свои особенности.

Виды излучений и их краткие характеристики

Переносчиком всех видов электромагнитного излучения является фотон. Он, по мнению ученых, един для всех. Вместе с тем, каждый вид излучения характеризуется разной длиной волны, частотой колебания и разной энергией фотонов. Значит, разными фотонами? Казалось бы, количеству различных видов электромагнитных волн должно соответствовать равное количество различных видов фотонов. Но фотон в современной физике пока только один.

Получается научный парадокс - излучения разные, их свойства тоже разные, а фотон, который переносит эти излучения, единый.

Например, гамма-излучение и рентгеновское излучение преодолевают преграды, а ультрафиолетовое и инфракрасное излучения и видимый свет, имея большую длину волны, но меньшую энергию - нет. Вместе с тем, микроволновое и радиоволновое излучения имеют еще большую длину волны и еще меньшую энергию, но преодолевает толщу воды и бетонные стены. Почему?


Проникающие способности фотонов при различных излучениях

Здесь возникают сразу два вопроса.

Вопрос второй .

Действительно ли все фотоны одинаковы во всех видах излучений?

Вопрос третий .

Почему фотоны одних видов излучений преодолевают преграды, а других видов излучений - нет? В чем дело - в излучениях или в фотонах?

Существует мнение, что фотон - это мельчайшая бесструктурная частица во Вселенной. Наука пока ещё не смогла определить что-либо, что было бы меньше фотона. Но так ли это? Ведь в свое время и атом считался неделимым и мельчайшим в окружающем нас мире. Поэтому логичен и четвёртый вопрос:

Вопрос четвёртый .

Является ли фотон мельчайшей и бесструктурной частицей или он состоит из ещё более мелких образований?

Кроме того, считается, что масса покоя фотона равна нулю, а в движении у него проявляется и масса, и энергия. Но тогда возникает и

вопрос пятый:

фотон - это материальная частица или нет? Если фотон материален, то куда пропадает его масса в покое? Если он не материален, то почему фиксируются его вполне материальные взаимодействия с окружающим нас миром?

Итак, перед нами пять загадочных вопросов, связанных с фотоном. И они на сегодняшний день не имеет своих четких ответов. За каждым из них стоят свои проблемы. Проблемы, которые мы постараемся сегодня рассмотреть.

В своих путешествиях «Дыхание Вселенной», «Глубины Вселенной» и «Силы Вселенной» мы через призму устройства и функционирования Вселенной достаточно глубоко рассматривали все эти вопросы. Мы проследили весь путь формирования фотонов от возникновения фундаментальных частиц - эфирных вихревых сгустков до галактик и их скоплений. Смею надеяться, что у нас получилась достаточно логичная и системно обустроенная картина мира. Поэтому предположение о строении фотона стало логическим шагом в системе знаний о нашей Вселенной.


Строение фотонов

Фотон предстал перед нами не как частица и не как волна, а как вращающаяся конусообразная пружинка, с расширяющимся началом и с сужающимся концом .

Пружинная конструкция фотона позволяет ответить практически на все вопросы, возникающие при изучении явлений природы и результатов экспериментов.

Мы уже упоминали, что переносчиками различных видов электромагнитного излучения являются фотоны. Вместе с тем, несмотря на то, что науке известны различные виды электромагнитного излучения: гамма-излучение, рентгеновское, ультрафиолетовое, видимое, инфракрасное, микроволновое излучение и радиоизлучение, фотоны-переносчики, которые задействованы в этих процессах не имеют своих разновидностей. То есть, по мнению некоторых ученых любой вид излучения переносится неким универсальным видом фотонов, который одинаково успешно проявляет себя и в процессах гамма-излучения, и в процессах радиоизлучения, и в любых других видах излучений.

Не могу согласиться с этой позицией, так как природные явления свидетельствуют о том, что все известные электромагнитные излучения существенно отличаются друг от друга не только параметрами (длиной волны, частотой, энергетическими возможностями), но и своими свойствами. Например, гамма-излучение легко проникает сквозь любые преграды, а видимое излучение этими преградами так же легко останавливается.

Следовательно, в одном случае фотоны могут переносить излучение сквозь преграды, а в другом, те же фотоны уже бессильны что-либо преодолеть. Этот факт заставляет задуматься о том, действительно ли фотоны столь универсальны или же они имеют свои разновидности, согласующиеся со свойствами различных электромагнитных излучений во Вселенной.

Полагаю правильным, каждому виду излучения определить свою разновидность фотонов. К сожалению, такой градации пока в современной науке не имеется. Но это не только легко, но и крайне необходимо исправить. И это вполне понятно, так как излучения и их параметры изменяются, а фотоны в современной интерпретации представлены лишь одним общим понятием - «фотоном». Хотя, надо признать, что с изменением параметров излучений в справочной литературе изменяются и параметры фотонов.

Ситуация подобна применению общего понятия «автомобиль» ко всем его маркам. Но эти марки различны. Мы можем приобрести «Ладу», «Мерседес», «Вольво» или «Тойоту». Все они подходят под понятие «автомобиль», но все они разные и по виду, и по техническим характеристикам, и по стоимости.

Поэтому, будет логично, если в качестве переносчиков гамма-излучения мы предложим фотоны гамма-излучения, рентгеновского излучения - фотоны рентгеновского излучения, ультрафиолетового излучения - фотоны ультрафиолетового излучения и т.д. Все эти виды фотонов будут отличаться друг от друга длиной витков (длиной волны), скорости вращения (частотой колебания) и энергией, которую они переносят.

Фотоны гамма-излучения и рентгеновского излучения представляют собой сжатую пружинку с минимальными размерами и с концентрированной энергией в этом маленьком объеме. Поэтому они проявляют свойства частицы и легко преодолевают препятствия, продвигаясь между молекулами и атомами вещества.

Фотоны ультрафиолетового излучения, видимый свет и фотоны инфракрасного излучения - это та же пружинка, только растянутая. Энергия в этих фотонах осталась прежней, но она распределилась по более вытянутому телу фотона. Увеличение длины фотона позволяет ему проявлять свойства волны. Однако, увеличение диаметра фотона не позволяет ему проникать между молекулами вещества.

Фотоны микроволнового и радиоизлучений имеют ещё более растянутую конструкцию. Длина радиоволн может достигать нескольких тысяч километров, но они имеют самую небольшую энергию. Они легко проникают сквозь преграды, как бы вкручиваясь в вещество преграды, обходя молекулы и атомы вещества.

Во Вселенной все виды фотонов постепенно преобразуется из фотонов гамма-излучения. Фотоны гамма-излучения первичны. При движении в пространстве уменьшается скорость их вращения и они последовательно преобразуются в фотоны рентгеновского излучения, а те, в свою очередь - в фотоны ультрафиолетового излучения, которые преобразуются в фотоны видимого света и т.д.

Поэтому, фотоны гамма-излучения преобразуются в фотоны рентгеновского излучения. Эти фотоны будут иметь более протяженную длину волны и меньшую частоту вращения. Затем, фотоны рентгеновского излучения преобразуются в фотоны ультрафиолетового излучения, а они - в видимый свет и т.д.

Наиболее яркий пример этого преобразования в динамике мы можем наблюдать при ядерном взрыве.


Ядерный взрыв и зоны его поражающего действия

В процессе ядерного взрыва в течение нескольких секунд поток фотонов гамма-излучения проникает в окружающую среду на расстояние примерно 3 км. Далее, гамма-излучение прекращается, но фиксируется рентгеновское излучение. Полагаю, что при этом фотоны гамма-излучения преобразовываются в фотоны рентгеновского излучения, а они, последовательно, в фотоны ультрафиолетового, видимого и инфракрасного излучения. Поток фотонов соответственно вызывает возникновение поражающих факторов ядерного взрыва - проникающую радиацию, световое излучение и пожары.

В работе «Глубины Вселенной» мы детально рассмотрели строение фотонов и процессы их формирования и функционирования. Нам стало понятным, что фотоны состоят из разного диаметра кольцеобразных энергетических фракций, соединенных друг с другом.


Строение фотона

Фракции формируются из фундаментальных частиц - мельчайших эфирных вихревых сгустков, которые представляют собой эфирные плотн ости. Эти эфирные плотности вполне материальны, как материален эфир и весь окружающий нас мир. Эфирные плотности определяют показатели массы эфирных вихревых сгустков. Масса сгустков составляет массу фракций, а они массу фотона. И не важно в движении или в покое он находится . Поэтому фотон вполне материален и имеет свою вполне определенную массу и в покое, и в движении .

Мы уже получили прямое подтверждение нашего представления о строении фотона и о его составе в ходе экспериментов. Надеюсь, что в скором будущем мы опубликуем все полученные результаты. Более того, подобные результаты были получены и в заграничных лабораториях. Так что, есть основания предполагать, что мы находимся на верном пути.

Итак, мы ответили на ряд вопросов о фотоне.

Фотон, в нашем понимании, - это не частица и не волна, а пружинка, которая в различных условиях может сжиматься до размеров частиц, а может и растягиваться, проявляя свойства волны.

Фотоны имеют свои разновидности в зависимости от вида излучений и могут быть фотонами гамма-излучения, фотонами рентгеновского излучения, фотонами ультрафиолетового, видимого, инфракрасного и микроволнового излучений, а также фотонами радиоизлучения.

Фотон материален и имеет массу. Он не является мельчайшей частицей во Вселенной, а состоит из эфирных вихревых сгустков и энергетических фракций.

Понимаю, что это несколько неожиданная и непривычная трактовка фотона. Однако, я исхожу не из общепринятых правил и постулатов, принятых уже много лет назад без связи с процессами общего развития мира. А из логики, которая исходит из законов устройства мира, которые являются ключом от двери, ведущей к Истине.

Вместе с тем, в 2013 году были вручены Нобелевские премии по физике Питеру Хиггсу и Франсуа Энглеру, которые в 1964 году независимо друг от друга предположили существование в природе еще одной частицы - нейтрального бозона, который с легкой руки нобелевского лауреата Л. Ледермана была названа «частицей Бога», то есть той первоосновы, того первого кирпичика, из которого был сконструирован весь наш окружающий мир. В 2012 году, проводя эксперименты по сталкиванию на больших скоростях пучков протонов два опять же независимых научных сообщества опять же практически одновременно проанонсировали обнаружение частицы, параметры которой совпали между собой и соответствовали значениям, предсказанным П. Хиггсом и Ф. Энглером.

В качестве такой частицы выступал зарегистрированный в ходе экспериментов нейтральный бозон, время жизни которого было не более 1,56 х 10 -22 секунд, а масса более чем в 100 раз превышала массу протона. Этой частице приписывали возможность сообщать массу всему тому материальному, что есть в этом мире - от атома до скопления галактик. Более того, предполагалось, что эта частица является прямым свидетельством наличия некого гипотетического поля, проходя через которое все частицы приобретают вес. Вот такое волшебное открытие.

Однако, всеобщая эйфория от этого открытия длилась недолго. Потому что появились вопросы, которые не могли не появиться. Действительно, если бозон Хиггса реально является «частицей Бога», то почему его «жизнь» столь скоротечна? Понимание Бога всегда связывалось с вечностью. Но если вечен Бог, то и любая Его частица тоже должна быть вечна. Это было бы логично и понятно. Но «жизнь» бозона длительностью в долю секунды с двадцатью двумя нулями после запятой не очень вяжется с вечностью. Даже мгновением это назвать трудно.

Более того, если уж и говорить о «частице Бога», то необходимо четко понимать, что она должна находиться во всем, что нас окружает и представлять собой самостоятельную, долгоживущую и минимально возможную объемную сущность, составляющую все известные частицы нашего мира.

Из этих божественных частиц постепенно шаг за шагом должен был бы строиться наш мир. Из них должны состоять частицы, из частиц - атомы и так до звезд, галактик и Вселенной. Все известные и неизвестные поля так же должны быть связаны с этой волшебной частицей и передавать не только массу, но и любое другое взаимодействие. Думаю, это логично и не противоречит здравому смыслу. Потому что, коль уж мы связываем эту частицу с божественным началом, то должны иметь и адекватный ответ на наши ожидания.

Однако, мы уже видели, что масса бозона Хиггса значительно превосходит даже массу протона. Но как же из большого можно построить малое? Как уместить слона в мышинной норке?! Никак.

Вся эта тема, честно признаться, не очень прозрачна и обоснованна. Хотя, может быть я что-то и не совсем понимаю в силу своей недостаточной компетенции, но тем не менее, бозон Хиггса, по моему глубокому убеждению, под «частицу Бога» не очень-то подходит.

Другое дело фотон. Эта замечательная частица полностью преобразила жизнь человека на планете.

Благодаря фотонам различных излучений мы видим окружающий нас мир, наслаждаемся солнечным светом и теплом, мы слушаем музыку и смотрим телевизионные новости, диагностируем и лечим, проверяем и дефектуем металлы, заглядываем в космос и проникаем в глубь вещества, общаемся друг с другом на расстоянии по телефону… Жизнь без фотонов была бы немыслима. Они не просто часть нашей жизни. Они - наша жизнь.

Фотоны, по сути, - главный инструмент общения Человека с окружающим его миром. Только они позволяют нам окунуться в окружающий нас мир и при помощи зрения, обоняния, осязания и вкуса понять его и восхититься его красотой и многокрасочностью. Все это, благодаря им - фотонам.

И еще. Это, наверное, главное. Только фотоны несут свет! А по всем религиозным канонам Бог и породил этот свет. Более того, Бог - и есть свет!

Ну, как здесь пройти мимо искушения и не назвать фотон реальной «частицей Бога»! Фотон и только фотон может претендовать на это высочайшее звание! Фотон - это свет! Фотон - это тепло! Фотон - это все буйство красок мира! Фотон - это благоуханные запахи и тонкие вкусы! Жизни без фотонов - не бывает! А если и бывает, то кому она нужна такая жизнь. Без света и тепла, без вкуса и запаха. Никому.

Поэтому, если уж и говорить о частице Бога , то надо говорить только о фотоне - об этом удивительном подарке, переданном нам Высшими Силами. Но и то, только аллегорически. Потому что у Бога не может быть частиц. Бог един и целостен и Его нельзя разделить ни на какие частицы.