Шаттлы. Программа Спейс Шаттл


На днях случайно заметил, что уже пять раз в комментариях отвечал на вопрос о степени успешности программы «Спейс Шаттл». Такая регулярность вопросов требует полноценной статьи. В ней я попытаюсь ответить на вопросы:

  • Какие цели ставила программа «Спейс Шаттл»?
  • Что получилось в итоге?

Тема многоразовых носителей очень объемная, поэтому в этой статье я специально ограничиваюсь только этими вопросами.

Что планировали?

Идея многоразовых кораблей занимала умы ученых и инженеров в США ещё с 50-х годов. С одной стороны, жалко разбивать о землю сброшенные отработавшие ступени. С другой стороны, аппарат, сочетающий в себе свойства самолёта и космического корабля, будет в русле самолётной философии, где многоразовость естественна. Рождались различные проекты: X-20 Dyna Soar , Recoverable Orbital Launch System (позже Aerospaceplane). В шестидесятые годы эта достаточно незаметная деятельность продолжалась в тени программ «Джемини» и «Аполлон». В 1965 году, за два года до полёта «Сатурна-V», был создан подкомитет по технологиям многоразовых ракет-носителей при Координационном совете по воздушно-космическим операциям (в котором участвовали ВВС США и NASA). Результатом этой работы был документ, изданный в 1966 году, в котором говорилось о необходимости преодоления серьезных трудностей, но обещалось блестящее будущее для работы на околоземной орбите. У ВВС и NASA было различное видение системы и различные требования, поэтому вместо одного проекта были представлены идеи кораблей различной компоновки и степени многоразовости. После 1966 года NASA стало задумываться о создании орбитальной станции. Такая станция подразумевала необходимость доставки большого количества грузов на орбиту, что, в свою очередь, поднимало вопрос о стоимости такой доставки. В декабре 1968 года была создана рабочая группа, которая стала заниматься т.н. объединенным аппаратом запуска и посадки Integral Launch and Reentry Vehicle (ILRV). Отчет этой группы был представлен в июле 1969 года и утверждал, что ILRV должен уметь:
  • Снабжать орбитальную станцию
  • Запускать и возвращать с орбиты спутники
  • Выводить на орбиту разгонные блоки и полезную нагрузку
  • Выводить на орбиту топливо (для последующей заправки других аппаратов)
  • Обслуживать и ремонтировать спутники на орбите
  • Проводить короткие пилотируемые миссии
В отчете рассматривались три класса кораблей: многоразовый корабль «верхом» на одноразовой ракете-носителе, полутораступенчатый корабль («половинка» ступени - это баки или двигатели, которые сбрасываются в полёте) и двухступенчатый корабль, обе ступени которого многоразовые.
Параллельно, в феврале 1969 года президент Никсон создал рабочую группу, задачей которой было определение направления движения в освоении космоса. Результатом работы этой группы была рекомендация создания многоразового корабля, который мог бы:
  • Стать фундаментальным улучшением существующей космической техники с точки зрения стоимости и объемов выводимого на орбиту
  • Транспортировать людей, грузы, топливо, другие корабли, разгонные блоки и прочее на орбиту как самолёт - регулярно, дешево, часто и много.
  • Быть универсальным для совместимости с широким спектром гражданских и военных полезных нагрузок.
Изначально инженеры двигались в направлении двухступенчатой полностью многоразовой системы: большой крылатый пилотируемый корабль нес на себе небольшой крылатый пилотируемый корабль, который уже выходил на орбиту:


Такая комбинация теоретически была самой дешевой в эксплуатации. Однако требование большой полезной нагрузки делало систему слишком большой (а, следовательно, и дорогой). К тому же военные хотели возможности горизонтального маневра в 3000 км для посадки на космодроме старта на первом витке с полярной орбиты, что ограничивало инженерные решения (например, становились невозможными прямые крылья).


Судя по подписи «high cross-range» (большой горизонтальный маневр) эта картинка нравилась военным

Итоговая компоновка очень сильно зависела от следующих требований:

  • Размер и емкость грузового отсека
  • Величина горизонтального маневра
  • Двигатели (тип, тяга и другие параметры)
  • Способ посадки (на двигателях или планированием)
  • Используемые материалы
В итоге на слушаниях в Белом Доме и Конгрессе были приняты финальные требования:
  • Грузовой отсек 4,5х18,2 м (15х60 футов)
  • 30 тонн на низкую околоземную орбиту, 18 тонн на полярную орбиту
  • Возможность горизонтального маневра на 2000 км

В районе 1970 года выяснилось, что на орбитальную станцию и шаттл одновременно денег не хватит. И станция, для которой шаттл должен был возить грузы, была отменена.
В то же время в инженерной среде царил ничем не сдерживаемый оптимизм. Опираясь на опыт эксплуатации экспериментальных ракетных самолётов (X-15), инженеры прогнозировали снижение стоимости килограмма на орбиту на два порядка (в сто раз). На симпозиуме, посвященном программе «Спейс Шаттл», который проходил в октябре 1969 года, «отец» шаттла Джордж Мюллер говорил:

«Наша цель - снизить стоимость килограмма на орбиту с $2000 для Сатурна-V до уровня $40-100 за килограмм. Этим мы откроем новую эру освоения космоса. Задачей на будущие недели и месяцы для этого симпозиума, для ВВС и NASA является обеспечение уверенности в том, что мы можем это сделать.»

Б.Е. Черток в четвертой части «Ракет и людей» приводит несколько другие цифры, но того же порядка:
Для различных вариантов на базе «Спейс шаттла» прогнозировалось достижение стоимости выведения в пределах от 90 до 330 долларов на килограмм. Более того, предполагалось, что «Спейс шаттл» второго поколения позволит снизить эти цифры до 33-66 долларов на килограмм.

По расчетам Мюллера запуск шаттла должен будет стоить $1-2,5 миллиона (сравните с $185 млн. для Сатурна-V).
Также были проведены достаточно серьезные экономические расчеты, которые показали, что для того, чтобы хотя бы сравняться по стоимости с ракетой-носителем «Титан-III» при прямом сравнении цен без учета дисконта, шаттлу нужно стартовать 28 раз в год. На фискальный 1971 год президент Никсон выделил $125 миллионов на производство одноразовых ракет-носителей, что составило 3,7% от бюджета NASA. Т.е., если бы шаттл уже был в 1971 году, то он бы сэкономил всего лишь 3,7 процента бюджета NASA. Ядерный физик Ральф Лапп (Ralph Lapp) посчитал, что за период 1964-1971 шаттл, если бы уже был, сэкономил бы 2,9% бюджета. Естественно, такие цифры не могли защитить шаттл, и NASA встало на скользкую дорожку игры с цифрами: «если бы была построена орбитальная станция, и если бы она нуждалась в миссии снабжения каждые две недели, то тогда бы шаттлы экономили миллиард долларов в год». Также продвигалась идея «с такими возможностями пуска полезные нагрузки станут дешевле, и их будет больше, чем сейчас, что ещё увеличит экономию». Только комбинация идей «шаттл будет летать часто и экономить деньги на каждом пуске» и «новые спутники для шаттла будут дешевле существующих для одноразовых ракет» смогла сделать шаттл экономически выгодным.


Экономические расчеты. Обратите внимание, что если убрать «новые спутники» (нижняя треть таблицы), то шаттлы становятся экономически невыгодными.


Экономические расчеты. Платим больше сейчас (левая часть) и выигрываем в будущем (правая заштрихованная часть).

Параллельно шли сложные политические игры с участием фирм-потенциальных производителей, ВВС, правительства и NASA. Например, NASA проиграло офису менеджмента и бюджета Исполнительного офиса Президента США битву за ускорители первой ступени. NASA хотело ускорители на ЖРД, но из-за того, что ускорители на РДТТ были дешевле в разработке, были выбраны последние. ВВС, которые добивались военных пилотируемых программ с X-20 и MOL, фактически получали военные миссии шаттла бесплатно в обмен на политическую поддержку NASA. Производство шаттлов намеренно размазывалось по всей стране между разными компаниями для экономического и политического эффекта.
В итоге этих сложных маневров, контракт на разработку системы «Спейс Шаттл» был подписан летом 1972 года. История производства и эксплуатация выходит за рамки этой статьи.

Что получили?

Сейчас, когда программа закончена, можно с достаточной точностью сказать, какие цели были достигнуты, а какие - нет.

Достигнутые цели :

  1. Доставка грузов различного типа (спутники, разгонные блоки, сегменты МКС).
  2. Возможность ремонта спутников на низкой околоземной орбите.
  3. Возможность возврата спутников на Землю.
  4. Возможность отправить в полёт до восьми человек.
  5. Реализована многоразовость.
  6. Реализована принципиально новая компоновка космического корабля.
  7. Возможность горизонтального маневра.
  8. Большой грузовой отсек.
  9. Стоимость и время разработки уложились в сроки, обещанные президенту Никсону в 1971 году.

Не достигнутые цели и провалы :

  1. Качественное облегчение доступа в космос. Вместо снижения цены за килограмм на два порядка, «Спейс Шаттл» стал одним из самых дорогих средств доставки спутников на орбиту.
  2. Быстрая подготовка шаттлов между полётами. Вместо ожидаемого срока в две недели между полётами, шаттлы готовились к пуску месяцами. До катастрофы «Челленджера» рекорд между полётами составлял 54 дня, после «Челленджера» - 88 дней. За все годы эксплуатации шаттлов они запускались в среднем 4,5 раза в год вместо минимально допустимых по расчетам 28 раз в год.
  3. Простота обслуживания. Выбранные технические решения были очень трудоемкими в обслуживании. Главные двигатели требовали демонтажа и много времени на сервис. Турбонасосные агрегаты двигателей первой модели требовали полной переборки и ремонта после каждого полёта. Плитки теплозащиты были уникальны - в каждое гнездо ставилась своя плитка. Всего плиток 35 000, к тому же, они могут быть потеряны или повреждены в полёте.
  4. Замена всех одноразовых носителей. Шаттлы никогда не стартовали на полярные орбиты, что нужно в основном для разведывательных спутников. Велись подготовительные работы, но они были остановлены после катастрофы «Челленджера».
  5. Надежный доступ в космос. Четыре орбитера означали, что катастрофа шаттла - это потеря четверти флота. После катастрофы полёты прекращались на годы. Также, шаттлы были печально известны постоянными переносами пусков.
  6. Грузоподъемность шаттлов оказалась на пять тонн ниже требуемой спецификациями (24,4 вместо 30)
  7. Большие возможности горизонтального маневра никогда не применялись в реальности из-за того, что шаттл не летал на полярные орбиты.
  8. Возврат спутников с орбиты прекратился в 1996 году. С орбиты было возвращено всего пять спутников.
  9. Ремонт спутников тоже оказался слабо востребован. Всего было отремонтировано пять спутников (правда, Хаббл обслуживали пять раз).
  10. Принятые инженерные решения негативно влияли на надежность системы. На взлете и посадке были участки без шансов на спасение экипажа при аварии. Из-за этого погиб «Челленджер». Миссия STS-9 чуть не кончилась катастрофой из-за пожара в хвостовой части, который возник уже на посадочной полосе. Случись этот пожар минутой раньше, шаттл бы упал без шансов на спасение экипажа.
  11. То, что шаттл всегда летал пилотируемым, подвергало риску людей без необходимости - для рутинного запуска спутников хватало автоматики.
  12. Из-за низкой интенсивности эксплуатации шаттлы устарели морально раньше, чем физически. В 2011 году «Спейс Шаттл» был очень редким примером эксплуатации процессора 80386. Одноразовые носители можно было модернизировать постепенно новыми сериями.
  13. Закрытие программы «Спейс Шаттл» наложилось на отмену программы «Созвездие», что привело к потере самостоятельного доступа в космос на многие годы, имиджевым потерям и необходимости покупать места на космических кораблях другой страны.
  14. Новые системы управления и надкалиберные обтекатели позволили запускать большие спутники на одноразовых ракетах.
  15. Шаттл держит печальный антирекорд среди космических систем по количеству погибших людей.

Программа «Спейс Шаттл» дала США уникальные возможности по работе в космосе, но, с точки зрения разницы «что хотели - что получили» приходится сделать вывод о том, что она не достигла своих целей.

Почему так получилось?
Специально подчеркиваю, что в этом пункте я высказываю свои соображения, возможно, какие-то из них неверны.
  1. Шаттлы были результатом множества компромиссов между интересами нескольких больших организаций. Возможно, если бы был один человек или команда единомышленников, которые имели бы четкое видение системы, она могла получиться удачнее.
  2. Требование «быть всем для всех» и заменить все одноразовые ракеты повысило стоимость и сложность системы. Универсальность при объединении разнородных требований приводит к усложнению, удорожанию, излишнему функционалу и худшей эффективности, чем специализация. Легко добавить будильник в мобильный телефон - динамик, часы, кнопки и электронные компоненты уже есть. Но летающая подводная лодка будет сложнее дороже и хуже специализированных самолёта и подлодки.
  3. Сложность и стоимость системы растет с размером экспоненциально. Возможно, шаттл на 5-10 тонн полезной нагрузки (в 3-4 раза меньше реализованного) был бы более успешен. Их можно было бы построить больше, часть флота сделать беспилотными, сделать одноразовый модуль для повышения грузоподъемности редких более тяжелых миссий.
  4. «Головокружение от успехов». Успешная реализация трёх программ последовательно увеличивающейся сложности могла вскружить головы инженерам и менеджерам. В самом деле, что пилотируемый первый пуск без беспилотной отработки, что отсутствие систем спасения экипажа на участках выведения/спуска говорят о некоторой самоуверенности.
Эй, а «Буран»?
Предвидя неизбежные сравнения, придется чуть-чуть сказать и про него. По «Бурану» нет статистики эксплуатации за много лет. С ним получилось в чем-то проще - его накрыло обломками развалившегося СССР, и нельзя сказать, была бы эта программа успешной. Первую часть этой программы - «сделать как у американцев» выполнили, а что было бы дальше - неизвестно.
А желающих устроить в комментах холивар «Что лучше?» прошу предварительно дать определение, что такое по-вашему «лучше». Потому что обе фразы «Буран имеет бОльший запас характеристической скорости (delta-V), чем Спейс Шаттл» и «Шаттл не сбрасывает дорогие маршевые двигатели со ступенью ракеты-носителя» верны.

Список источников (не учитывая википедии):

  1. Ray A. Williamson

Человечество научилось строить очень мощные и высокоскоростные объекты, которые собираются десятилетиями, чтобы потом достигнуть самых отдаленных целей. «Шаттл» на орбите движется со скоростью более 27 тысяч км в час. Ряд космических зондов НАСА, такие как «Гелиос 1», «Гелиос 2» или «Воджер 1» достаточно мощны, чтобы достичь Луны за несколько часов.

Эта статья была переведена с англоязычного ресурса themysteriousworld.com и, конечно же, не совсем соответствует действительности. Многие российские и советские ракетоносители и космические аппараты преодолевали барьер в 11000 км/ч, но на западе, видимо, привыкли этого не замечать. Да и информации о наших космических объектах в свободном доступе довольно немного, во всяком случае о скорости многих российских аппаратов мы так и не смогли узнать.

Вот список из десяти самых быстрых объектов, произведенных человечеством:

✰ ✰ ✰
10

Ракетная тележка

Скорость: 10 385 км/ч

Ракетные тележки фактически используются для тестирования платформ, используемых для ускорения экспериментальных объектов. Во время испытаний тележка имеет рекордную скорость 10385 км/час. На этих устройствах вместо колес используются раздвижные колодки, чтобы можно было развить такую молниеносную скорость. Ракетные тележки приводятся в движение с помощью ракет.

Эта внешняя сила придает начальное ускорение экспериментальным объектам. У тележек также есть длинные, более 3 км, прямые участки пути. Танки ракетных тележек заполнены смазочными материалами, такими как газообразный гелий, так что это помогает экспериментальному объекту развить необходимую скорость. Эти устройства обычно используются для ускорения ракет, авиационных деталей и аварийно-спасательных секций воздушных судов.

✰ ✰ ✰
9

NASA X-43 A

Скорость: 11 200 км/ч

ASA X-43 А представляет собой беспилотный сверхзвуковой летательный аппарат, который запускается с большего самолета. В 2005 году, книга рекордов Гиннеса признала NASA X-43 А самым быстрым самолетом из когда-либо сделанных. Он развивает максимальную скорость 11 265 км/ч, это примерно в 8,4 раза быстрее, чем скорость звука.

NASA X-13 А использует технологию запуска при падении. Сначала этот сверхзвуковой самолет попадает на большую высоту на более крупном самолете, а затем падает. Необходимая скорость достигается с помощью ракеты-носителя. На заключительном этапе, после достижения заданной скорости NASA X-13 работает на своем собственном двигателе.

✰ ✰ ✰
8

Шаттл «Колумбия»

Скорость: 27 350 км/ч

Шаттл «Колумбия» был первым успешным многоразовым космическим кораблем за всю историю освоения космоса. С 1981 года он успешно выполнил 37 миссий. Рекордная скорость шаттла «Колумбия» — 27 350 км/ч. Корабль превысил свою нормальную скорость, когда упал 1 февраля 2003 года.

Обычно шаттл движется со скоростью 27 350 км/ч, чтобы оставаться на нижней орбите Земли. При такой скорости, экипаж космического корабля может увидеть восход и заход солнца несколько раз в течение одного дня.

✰ ✰ ✰
7

Шаттл «Дискавери»

Скорость: 28 000 км/ч

Шаттл «Дискавери» имеет рекордное число успешных миссий, больше, чем любой другой космический корабль. С 1984 года «Дискавери» осуществил 30 успешных рейсов, и его рекорд скорости — 28 000 км/ч. Это в пять раз быстрее, чем скорость пули. Иногда космические аппараты должны двигаться быстрее, чем их обычная скорость 27 350 км/ч. Все зависит от выбранной орбиты и высоты космического аппарата.

✰ ✰ ✰
6

Спускаемый аппарат «Аполлон 10»

Скорость: 39 897 км/ч

Запуск «Аполлон 10» был репетицией миссии НАСА перед прилунением. Во время обратного пути, 26 мая 1969 года аппарат «Аполлон 10» приобрел молниеносную скорость 39 897 км/ч. Книга рекордов Гиннеса зафиксировала рекорд скорости спускаемого аппарата «Аполлон 10» как максимальный рекорд скорости пилотируемого транспортного средства.

На самом деле, модулю «Аполлон 10» была нужна такая скорость, чтобы с лунной орбиты достигнуть атмосферы Земли. Свою миссию «Аполлон 10» также завершил миссию за 56 часов.

Пока космические запуски были редкими, вопрос о стоимости ракет-носителей особого внимания к себе не привлекал. Но по мере освоения космоса он стал приобретать все большее значение. Стоимость ракеты-носителя в общей стоимости запуска космического аппарата бывает разная. Если носитель серийный, а космический аппарат, который он запускает, уникальный, стоимость носителя — около 10 процентов от общей стоимости запуска. Если космический аппарат серийный, а носитель уникальный - до 40 процентов и более. Высокая стоимость космической транспортировки объясняется тем, что ракета-носитель применяется один-единственный раз. Спутники и космические станции работают на орбите или в межпланетном пространстве, принося определенный научный или хозяйственный результат, а ступени ракеты, имеющие сложную конструкцию и дорогое оборудование, сгорают в плотных слоях атмосферы. Естественно, возник вопрос о снижении стоимости космических запусков за счет повторного запуска ракет-носителей.

Существует много проектов таких систем. Один из них - космический самолет. Это крылатая машина, которая, подобно воздушному лайнеру, взлетала бы с космодрома и, доставив полезный груз на орбиту (спутник или космический корабль), возвращалась бы на Землю. Но создать такой самолет пока невозможно, главным образом из-за необходимого соотношения масс полезного груза и полной массы машины. Экономически невыгодными или трудноосуществимыми оказывались и многие другие схемы летательных аппаратов многоразового использования.

Тем не менее в США все-таки взяли курс на создание космического корабля многоразового использования. Многие специалисты были против столь дорогостоящего проекта. Но его поддержал Пентагон.

Разработка системы «Спейс Шаттл» («космический челнок») началась в США в 1972 году. В ее основу была положена концепция космического летательного аппарата многоразового использования, предназначенного для вывода на околоземные орбиты искусственных спутников и других объектов. Космический летательный аппарат «Шаттл» представляет собой связку из пилотируемой орбитальной ступени, двух твердотопливных ракетных ускорителей и большого топливного бака, расположенного между этими ускорителями.

Стартует «Шаттл» вертикально с помощью двух твердотопливных ускорителей (диаметр каждого 3,7 метра), а также жидкостных ракетных двигателей орбитальной ступени, которые питаются топливом (жидкий водород и жидкий кислород) от большого топливного бака. Твердотопливные ускорители работают только на начальном участке траектории. Время их работы чуть больше двух минут. На высоте 70-90 километров ускорители отделяются, спускаются на парашютах на воду, в океан, и буксируются к берегу, с тем чтобы после восстановительного ремонта и зарядки топливом использовать их вновь. При выходе на орбиту топливный бак (диаметром 8,5 метра и длиной 47 метров) сбрасывается и сгорает в плотных слоях атмосферы.

Самый сложный элемент комплекса орбитальная ступень. Она напоминает ракетный самолет с треугольным крылом. Помимо двигателей, в ней размещены кабина экипажа и грузовой отсек. Орбитальная ступень осуществляет сход с орбиты как обычный космический аппарат и производит посадку без тяги, только за счет подъемной силы стреловидного крыла малого удлинения. Крыло позволяет орбитальной ступени совершать некоторый маневр как по дальности, так и по курсу и в конечной счете производить посадку на специальную бетонную полосу. Посадочная скорость ступени при этом намного выше, чем у любого истребителя. - около 350 километров в час. Корпус орбитальной ступени должен выдерживать температуру 1600 градусов Цельсия. Теплозащитное покрытие состоит из 30922 силикатных плиток, приклеенных к фюзеляжу и плотно подогнанных друг к другу.

Космический летательный аппарат «Шаттл» своего рода компромисс и в техническом, и в экономическом отношении. Максимальный полезный груз, доставляемый «Шаттлом» на орбиту, - от 14,5 до 29,5 тонны, а его стартовая масса - 2000 тонн, то есть полезная нагрузка составляет всего 0,8-1,5 процента от полной массы заправленного корабля. В то же время этот показатель для обычной ракеты при том же полезном грузе составляет 2-4 процента. Если же взять в качестве показателя отношение полезного груза к весу конструкции, без учета топлива, то преимущество в пользу обычной ракеты еще более возрастет. Такова плата за возможность хотя бы частично использовать повторно конструкции космического аппарата.

Один из создателей космических кораблей и станций, летчик-космонавт СССР, профессор К.П. Феоктистов, так оценивает экономическую эффективность «Шаттлов»: «Что и говорить, создать экономичную транспортную систему непросто. Некоторых специалистов в идее «Шаттла» смущает еще и следующее. Согласно экономическим расчетам он оправдывает себя примерно при 40 полетах в год на один образец. Получается, что в год только один "самолет", чтобы оправдать свою постройку, должен выводить на орбиту порядка тысячи тонн разных грузов. С другой стороны, имеет место тенденция к снижению веса космических аппаратов, увеличению продолжительности их активной жизни на орбите и вообще к снижению количества запускаемых аппаратов за счет решения каждым из них комплекса задач».

С точки зрения эффективности создание транспортного корабля многоразового использования такой большой грузоподъемности дело преждевременное. Снабжать орбитальные станции гораздо выгоднее с помощью автоматических транспортных кораблей типа «Прогресс» Сегодня стоимость одного килограмма груза, выводимого в космос «Шаттлом» составляет 25000 долларов, а «Протоном» - 5000 долларов.

Без прямой поддержки Пентагона проект вряд ли удалось бы довести до стадии полетных экспериментов. В самом начале проекта при штабе ВВС США был учрежден комитет по использованию корабля «Шаттл». Было принято решение о строительстве стартовой площадки для челночного корабля на базе ВВС Ванденберг в Калифорнии, с которой осуществляются запуски космических аппаратов военного назначения. Военные заказчики планировали использовать «Шаттл» для выполнения широкой программы размещения в космосе разведывательных спутников, систем радиолокационного обнаружения и наведения на цель боевых ракет, для пилотируемых разведывательных полетов, создания космических командных постов, орбитальных платформ с лазерным оружием, для «инспекции» на орбите чужих космических объектов и доставки их на Землю. Корабль «Шаттл» также рассматривался как одно из ключевых звеньев общей программы создания космического лазерного оружия.

Так, уже в первом полете экипаж корабля «Колумбия» выполнял задание военного характера, связанное с проверкой надежности прицельного устройства для лазерного оружия. Размещенный на орбите лазер должен точно наводиться на ракеты, удаленные от него на сотни и тысячи километров.

С начала 1980-х годов ВВС США готовили ряд несекретных экспериментов на полярной орбите с целью разработки перспективной аппаратуры для слежения за объектами, движущимися в воздушном и безвоздушном пространстве.

Катастрофа «Челленджера» 28 января 1986 года внесла коррективы в дальнейшее развитие космических программ США. «Челленджер» ушел в свой последний полет, парализовав всю американскую космическую программу. Пока «Шаттлы» стояли на приколе, сотрудничество НАСА с министерством обороны оказалось под вопросом. ВВС фактически распустили свою группу астронавтов. Переменился и состав военно-научной миссии, получившей наименование СТС-39 и перенесенной на мыс Канаверал.

Сроки следующего полета неоднократно отодвигались. Программа возобновилась только в 1990 году. С той поры «Шаттлы» регулярно совершали космические полеты. Они участвовали в ремонте телескопа «Хаббл», полетах на станцию «Мир», строительстве МКС.

Ко времени возобновления полетов «Шаттлов» в СССР уже был готов корабль многоразового использования, во многом превзошедший американский. 15 ноября 1988 года новая ракета-носитель «Энергия» вывела на околоземную орбиту многоразовый корабль «Буран». Он, совершив два витка вокруг Земли, ведомый чудо-автоматами, красиво приземлился на бетонную посадочную полосу Байконура, будто рейсовый лайнер «Аэрофлота».

Ракета-носитель «Энергия» базовая ракета целой системы ракет-носителей, образуемых сочетанием разного количества унифицированных модульных ступеней и способных выводить в космос аппараты массой от 10 до сотен тонн! Ее основу, стержень, составляет вторая ступень. Ее высота - 60 метров, диаметр - около 8 метров. На ней установлено четыре жидкостных ракетных двигателя, работающих на водороде (горючее) и кислороде (окислитель). Тяга каждого такого двигателя у поверхности Земли - 1480 кН. Вокруг второй ступени у ее основания пристыкованы попарно четыре блока, образующие первую ступень ракеты-носителя. На каждом блоке установлен самый мощный в мире четырехкамерный двигатель РД-170 тягой в 7400 кН у Земли.

«Пакет» блоков первой и второй ступеней и образует мощную, тяжелую ракету-носитель, имеющую стартовую массу до 2400 тонн, несущую полезную нагрузку 100 тонн.

«Буран» имеет большое внешнее сходство с американским «Шаттлом». Корабль построен по схеме самолета типа «бесхвостка» с треугольным крылом переменной стреловидности, имеет аэродинамические органы управления, работающие при посадке после возвращения в плотные слои атмосферы руль направления и элевоны. Он был способен совершать управляемый спуск в атмосфере с боковым маневром до 2000 километров.

Длина «Бурана» - 36,4 метра, размах крыла - около 24 метра, высота корабля на шасси - более 16 метров. Стартовая масса корабля - более 100 тонн, из которых 14 тонн приходится на топливо. В носовой отсек вставлена герметичная цельносварная кабина для экипажа и большей части аппаратуры для обеспечения полета в составе ракетно-космического комплекса, автономного полета на орбите, спуска и посадки. Объем кабины - более 70 кубических метров.

При возвращении в плотные слои атмосферы наиболее тепло напряженные участки поверхности корабля раскаляются до 1600 градусов, тепло же, доходящее непосредственно до металлической конструкции корабля, не должно превышать 150 градусов. Поэтому «Буран» отличала мощная тепловая защита, обеспечивающая нормальные температурные условия для конструкции корабля при прохождении плотных слоев атмосферы во время посадки.

Теплозащитное покрытие из более 38 тысяч плиток изготовлено из специальных материалов: кварцевое волокно, высокотемпературные органические волокна, частично материал на основе углерода. Керамическая броня обладает способностью аккумулировать тепло, не пропуская его к корпусу корабля. Общая масса этой брони составила около 9 тонн.

Длина грузового отсека «Бурана» - около 18 метров. В его обширном грузовом отсеке мог разместиться полезный груз массой до 30 тонн. Туда можно было поместить крупногабаритные космические аппараты - большие спутники, блоки орбитальных станций. Посадочная масса корабля - 82 тонны.

«Буран» оснастили всеми необходимыми системами и оборудованием как для автоматического, так и для пилотируемого полета. Это и средства навигации и управления, и радиотехнические и телевизионные системы, и автоматические устройства регулирования теплового режима, и система жизнеобеспечения экипажа, и многое-многое другое.

Основная двигательная установка, две группы двигателей для маневрирования расположены в конце хвостового отсека и в передней части корпуса.

«Буран» явился ответом американской военной космической программе. Потому после потепления отношений с США судьба корабля была предрешена.

25 декабря 1909 года родился Глеб Лозино-Лозинский — патриарх отечественной авиационно-космической техники, создатель многоразового космического корабля «Буран». По этому случаю мы решили вспомнить о пяти самых необычных проектах космических «челноков»

"Буран"

Глеба Лозино-Лозинского — лауреата Ленинской (1962 год) и двух Государственных премий (1950 и 1952 годы), генерального конструктора НПО «Молния» в России почти не знают. Между тем, его без натяжек можно поставить на одну ступень с Сергеем Королевым — как по масштабу конструкторского дара, так и по таланту организатора.

В 1940-е Лозино-Лозинский возглавил в ОКБ Микояна работы по комплексному повышению эффективности реактивных силовых установок. Результатом стал МиГ-19 — первый в мире серийный сверхзвуковой истребитель. В 1971 году Лозино-Лозинского назначили главным конструктором сверхзвукового перехватчика, который весь мир узнал как МиГ-31, в 1972-м он представил проект МиГ-29.

Но вершиной конструкторского успеха Лозино-Лозинского стало создание «советского шаттла» — корабля «Буран», способного поднимать на 200 километров 30 тонн полезного груза, а возвращать с орбиты 20 тонн. В отечественной ракетно-космической технике не было аналогов, по сложности равных «Бурану»: его конструкция включала 600 единиц бортовой аппаратуры, более 50 бортовых систем, более 1500 трубопроводов, около 15000 электрических соединителей. Над проектом работали более 1200 предприятий и научных центров страны — в общей сложности более полутора миллионов человек.

Результатом стал триумфальный двухвитковый беспилотный полет «Бурана» с автоматической посадкой 15 ноября 1988 года. Полет продолжался 206 минут, потом корабль со скоростью 27330 км/ч вошел в атмосферу над Атлантикой на расстоянии 8270 км от Байконура. В 9 час 24 мин 42 сек, опережая всего на секунду расчетное время, «Буран», преодолевая штормовые порывы бокового ветра, на скорости 263 км/ч коснулся посадочной полосы и через 42 сек, пробежав 1620 м, замер в ее центре с отклонением от осевой линии всего на 3 м!

«Спираль»

Главным делом жизни сам Лозино-Лозинский считал создание компактного космического ракетоплана, который мог бы стартовать не с Байконура, а со сверхзвукового стратегического бомбардировщика Ту-95. Такой ракетоплан мог бы уничтожать в космосе американские «шаттлы», а также баллистические ракеты. В 1965 году практические работы по орбитальным и гиперзвуковым самолетам были поручены ОКБ-155 Микояна, где их возглавил 55-летний главный конструктор ОКБ Лозино-Лозинский. Тема по созданию двухступенчатой воздушно-космической системы получила название «Спираль». Боевой пилотируемый одноместный корабль многоразового применения предусматривался в нескольких вариантах: разведчика, перехватчика или ударного самолета с ракетой класса «Орбита-Земля».

В рамках проекта «Спираль» были построены модели боевого аппарата в масштабе 1:3, получившие название «БОР-4». Он представлял собой экспериментальный аппарат длиной 3.4 м, размахом крыла 2.6 м и массой 1074 кг на орбите. В период с 1982−84 годы было произведено шесть запусков таких аппаратов ракетами-носителями «Космос» с космодрома Капустин-Яр на различные траектории.

Всего на программу «Спираль» было затрачено более 75 миллионов рублей, но дальше запусков в космос моделей дело не пошло — программа была свернута.

Проект Dyna-Soar

Этот проект — первая попытка американцев построить пилотируемый орбитальный космический корабль многократного использования. 4 октября 1957 года Советский Союз вывел на орбиту первый искусственный спутник Земли. А меньше чем через неделю ВВС США объединили несколько авиационно-космических проектов в единую программу, названную Dyna-Soar (от Dynamic Soaring — разгон и планирование)

Полноразмерный макет «челнока» был представлен ВВС и NASA в Сиэтле 11 сентября 1961 года. Типичный одновитковый полет предусматривал следующее: Dyna-Soar стартует с помощью ракеты-носителя «Титан-IIIC» со стартового комплекса на мысе Канаверал, и достигает орбиты через 9,7 минут после запуска на высоте 97,6 км и скорости 7457 м/с. Аппарат Dyna-Soar делает виток вокруг Земли, возвращается в атмосферу и совершает посадку на авиабазе Эдвардс через 107 минут после запуска.

Однако 10 декабря 1963 года министр обороны США Макнамара закрыл проект Dyna-Soar. Одна из причин такого решения — пилотируемый аппарат был одноместным, что не устраивало военных. Dyna-Soar оставалось всего три года до первого полета. На научные исследования были потрачены 410 миллионов долларов, и требовалось еще 373 миллиона, чтобы довести проект до реального полета в космос.

«Спейс Шаттл»

История программы «Спейс Шаттл» началась в конце 1960-х годов, на вершине триумфа американской национальной космической программы. 20 июня 1969 года два американца — Нейл Армстронг и Эдвин Олдрин высадились на Луне. Выиграв в «лунной» гонке, Америка доказала свое превосходство в освоении космоса. Нужны были новые цели и новые технические средства для доступа людей в космос, и 30 октября 1968 года два головных центра NASA (Центр пилотируемых космических кораблей — MSC — в Хьюстоне и Космический центр имени Маршалла — MSFC — в Хантсвилле) обратились к американским космическим фирмам с предложением исследовать возможность создания многоразовой космической системы.

В марте 1972 года на базе хьюстонского проекта MSC-040С был утвержден тот облик шаттла, который мы знаем сегодня: стартовые твердотопливные ускорители, одноразовый бак компонентов топлива и орбитальный корабль с тремя маршевыми двигателями. Разработка такой системы, где многократно используется все, кроме внешнего бака, оценивалась в 5,15 млрд. долларов.

Изготовление первых двух «шаттлов» началось на заводе ВВС США в Палмдейле в июне 1974 года. Корабль OV-101 был выпущен 17 сентября 1976 года и получил название «Энтерпрайз» по имени звездолета из фантастического телесериала Star Trek. В январе 1979-го флотилия шаттлов пополнилась четырьмя кораблями: «Колумбией», «Челленджером», «Дискавери» и «Атлантис». После гибели в 1986 году «Челленджера» был построен еще один шаттл — «Эндевор».

Программа «Спейс Шаттл» оказалась более дорогостоящей, чем планировалось: ее стоимость возросла с 5,2 млрд. долларов (в ценах 1971 года) до 10,1 млрд. долларов (в ценах 1982 года), а стоимость пуска — с 10,5 млн. долларов до 240 млн. долларов. При разработке предусматривалось, что шаттлы будут совершать по 24 старта в год, и каждый из них совершит до 100 полетов в космос. На практике они использовались значительно реже — к закрытию программы летом 2011 года было произведено 135 пусков, больше всего полетов (39) совершил «Дискавери».

Частный челнок SpaceShipTwo

Компания Virgin Galactic, основанная британским миллиардером сэром Ричардом Брэнсоном в 2004 году, предложила частные пассажирские полеты в космос. Для этого она принялась разрабатывать собственный космический челнок. Спустя пять лет специалисты компании представили корабль SpaceShipTwo.

10 октября 2010 года на аэродроме в пустыне Мохаве состоялся первый испытательный полет ракетоплана. Аппарат был поднят самолетом-носителем WhiteKnightTwo на высоту 15 км, и после отделения от носителя и 15-минутного свободного полета совершил посадку. А 30 апреля 2013 года были произведены испытания реактивного двигателя. Отделившись от носителя на высоте около 14 км, SpaceShipTwo включил двигатель, и через 16 секунд достиг скорости 1,2 Маха и высоты 17 км. Это значит, до суборбитальных пассажирских полетов осталось всего ничего.

Как только SpaceShipTwo будет готов полностью, самолет-носитель вынесет его до высоты в 15,24 километров, после чего произойдет расстыковка, космический аппарат ускорится до 4023 км/час и поднимется до высоты 100 километров. Предполагается, что билет на борт космического челнока будет стоить 200 тысяч долларов. На сегодняшний момент желание стать космическими туристами выразили более 550 человек.

Косми́ческая тра́нспортная систе́ма (англ. Space Transportation System), более известная как Спе́йс ша́ттл (от англ. Space shuttle - косми́ческий челно́к) - американский многоразовый транспортный космический корабль. Шаттл запускается в космос с помощью ракет-носителей, осуществляет манёвры на орбите как космический корабль и возвращается на Землю как самолёт. Подразумевалось, что шаттлы будут сновать, как челноки, между околоземной орбитой и Землёй, доставляя полезные грузы в обоих направлениях. При разработке предусматривалось, что каждый из шаттлов должен был до 100 раз стартовать в космос. На практике же они используются значительно меньше. К маю 2010 года больше всего полётов - 38 - совершил шаттл «Дискавери». Всего с 1975 по 1991 год было построено пять шаттлов: «Колумбия» (сгорел при посадке в 2003), «Челленджер» (взорвался при старте в 1986), «Дискавери», «Атлантис» и «Индевор». 14 мая 2010 года спейс шаттл «Атлантис» совершил свой последний старт с мыса Канаверал. По возвращении на Землю он будет списан.

История применения

Программа по созданию шаттлов разрабатывалась компанией North American Rockwell по поручению НАСА с 1971 года.
Шаттл «Колумбия» был первым действующим многоразовым орбитальным аппаратом. Его изготовили в 1979 году и передали Космическому центру НАСА имени Кеннеди. Шаттл «Колумбия» был назван по имени парусника, на котором капитан Роберт Грей в мае 1792 года исследовал внутренние воды Британской Колумбии (ныне штаты США Вашингтон и Орегон). В НАСА «Колумбия» имеет обозначение OV-102 (Orbiter Vehicle - 102). Шаттл «Колумбия» погиб 1 февраля 2003 года (полёт STS-107) при входе в атмосферу Земли перед посадкой. Это было 28-е космическое путешествие «Колумбии».
Второй космический челнок - «Челленджер» был передан НАСА в июле 1982 года. Он был назван по имени морского судна, исследовавшего океан в 1870-е годы. В НАСА «Челленджер» имеет обозначение - OV-099. «Челленджер» погиб при своём десятом запуске 28 января 1986 года.
Третий шаттл - «Дискавери» был передан НАСА в ноябре 1982 года.
Шаттл «Дискавери» был назван по имени одного из двух судов, на которых, в 1770-х годах, британский капитан Джеймс Кук (англ. James Cook) открыл Гавайские острова и исследовал побережье Аляски и северо-западной Канады. Такое же имя («Дискавери») носило одно из судов Генри Хадсона, который в 1610-1611 годах исследовал Гудзонов залив. Ещё два «Дискавери» были построены Британским Королевским Географическим Обществом для исследования Северного полюса и Антарктики в 1875 и 1901 годах. В НАСА «Дискавери» имеет обозначение OV-103.
Четвёртый шаттл - «Атлантис» (Atlantis) вступил в строй в апреле 1985 года.
Пятый шаттл - «Индевор» (Endeavour) был построен взамен погибшего «Челленджера» и принят в эксплуатацию в мае 1991 года. Шаттл «Индевор» был назван также по имени одного из судов Джеймса Кука. Это судно использовалось в астрономических наблюдениях, которые позволили точно установить расстояние от Земли до Солнца. Этот корабль также участвовал в экспедициях по исследованию Новой Зеландии. В НАСА «Индевор» имеет обозначение OV-105.
До «Колумбии» был построен ещё один шаттл - «Энтерпрайз» (Enterprise), который в конце 1970-х годов использовался только как тестовый аппарат для отработки методов посадки и не летал в космос. В самом начале предполагалось назвать этот орбитальный корабль - «Конституция» (Constitution) в честь двухсотлетия американской Конституции. Позже, по многочисленным предложениям зрителей популярного телевизионного сериала «Звёздный путь» (Star Trek), было выбрано имя «Энтерпрайз». В НАСА «Энтерпрайз» имеет обозначение OV-101.

Шаттл «Дискавери» взлетает. Миссия STS-120

Общие сведения
Страна Соединённые Штаты Америки США
Назначение Многоразовый транспортный космический корабль
Изготовитель United Space Alliance:
Thiokol/Alliant Techsystems (SRBs)
Lockheed Martin (Martin Marietta) - (ET)
Rockwell/Boeing (orbiter)
Основные характеристики
Количество ступеней 2
Длина 56,1 м
Диаметр 8,69 м
Стартовая масса 2030 т
Масса полезной нагрузки
- на НОО 24 400 кг
- на Геостационарная орбита 3810 кг
История запусков
Состояние действующий
Места запуска Космический центр Кеннеди, 39-й комплекс
База Ванденберг (планировалось в 1980-е)
Число запусков 128
- успешных 127
- неудачных 1 (launch failure, Challenger)
- частично неудачных 1 (re-entry failure, Columbia)
Первый запуск 12 апреля 1981 года
Последний запуск осень 2010 года

Конструкция

Шаттл состоит из трёх основных компонентов: орбитальный аппарат (Орбитер, Orbiter), который выводится на околоземную орбиту и который является, собственно, космическим кораблём; большой внешний топливный бак, для главных двигателей; и два твердотопливных ракетных ускорителя, которые работают в течение двух минут после старта. После выхода в космос орбитер самостоятельно возвращается на Землю и совершает посадку как самолёт на взлётно-посадочную полосу. Твердотопливные ускорители приводняются на парашютах и затем используются вновь. Внешний топливный бак сгорает в атмосфере.


История создания

Существует серьёзное заблуждение, что программа «Спейс шаттл» создавалась для военных нужд, в качестве некоего «космического бомбардировщика». Это глубоко неверное «мнение» основывается на «возможности» челноков нести ядерное вооружение (такую возможность в той же степени имеет любой достаточно большой пассажирский авиалайнер (к примеру, первый советский трансконтинентальный авиалайнер Ту-114 был создан на базе стратегического ядерного носителя Ту-95) и на теоретических предположениях об «орбитальных нырках», которые якобы способны проводить (и даже осуществляли) орбитальные корабли многоразового использования.
На самом деле, все упоминания о «бомбардировочном» назначении шаттлов содержатся исключительно в советских источниках, как оценка военного потенциала космических челноков. Справедливо будет предположить, что эти «оценки» использовались, чтобы убедить высшее руководство в необходимости «адекватного ответа» и создать свою аналогичную систему.
История проекта спейс шаттл начинается в 1967 году, когда ещё до первого пилотируемого полёта по программе «Аполло» (11 октября 1968 года - старт «Аполло-7») оставалось больше года, как обзор перспектив пилотируемой космонавтики после завершения лунной программы NASA.
30 октября 1968 года два головных центра NASA (Центр пилотируемых космических кораблей - MSC - в Хьюстоне и Космический центр имени Маршалла - MSFC - в Хантсвилле) обратились к американским космическим фирмам с предложением исследовать возможность создания многоразовой космической системы, что должно было снизить затраты космического агентства при условии интенсивного использования.
В сентябре 1970 года Целевая космическая группа под руководством вице-президента США С. Агню, специально созданная для определения следующих шагов в освоения космического пространства, оформила два детально проработанных проекта вероятных программ.
Большой проект включал:

* космические челноки;
* орбитальные буксиры;
* большую орбитальную станцию на Земной орбите (до 50 человек экипажа);
* малую орбитальную станцию на орбите Луны;
* создание обитаемой базы на Луне;
* пилотируемые экспедиции к Марсу;
* высадку людей на поверхность Марса.
В качестве малого проекта предлагалось создать только большую орбитальную станцию на Земной орбите. Но в обоих проектах, было определено, что орбитальные полёты: снабжение станции, доставку на орбиту грузов для дальних экспедиций или блоки кораблей для дальних полётов, смена экипажей и прочие задания на орбите Земли должны осуществляться многоразовой системой, которая и получила тогда название Space Shuttle.
Также существовали планы создания «атомного шаттла» - челнока с ядерной двигательной установкой NERVA (англ.), который разрабатывался и испытывался в 1960-х годах. Атомный шаттл должен был осуществлять полёты между земной орбитой, орбитой Луны и Марса. Снабжение атомного челнока рабочим телом для ядерного двигателя возлагалось на знакомые нам обыкновенные шаттлы:

Nuclear Shuttle: This reusable rocket would rely on the NERVA nuclear engine. It would operate between low earth orbit, lunar orbit, and geosynchronous orbit, with its exceptionally high performance enabling it to carry heavy payloads and to do considerable amounts of work with limited stores of liquid-hydrogen propellant. In turn, the nuclear shuttle would receive this propellant from the Space Shuttle.

SP-4221 The Space Shuttle Decision

Однако, президент США Ричард Никсон отверг все варианты, потому что даже самый дешевый требовал 5 млрд долларов в год. NASA оказалось перед тяжёлым выбором: нужно было или начать новую крупную разработку, или объявить о прекращении пилотируемой программы.
Было решено настаивать на создании шаттла, но подать его не как транспортный корабль для сборки и обслуживания космической станции (держа, однако, это про запас), а как систему, способную приносить прибыль и окупить инвестиции за счёт выведения на орбиту спутников на коммерческой основе. Экономическая экспертиза подтвердила: теоретически, при условии не менее 30 полётов в год и полном отказе от использования одноразовых носителей, система спейс шаттл может быть рентабельной.
Проект создания системы «Спейс шаттл» был принят Конгрессом США.
Одновременно, в связи с отказом от одноразовых ракет носителей, определялось, что на шаттлы возлагается обязанность осуществлять вывод на земную орбиту и всех перспективных аппаратов Минобороны, ЦРУ и АНБ США.
Военные предъявили свои требования к системе:

* Космическая система должна быть способна выводить на орбиту полезный груз до 30 тонн, возвращать на Землю полезную нагрузку до 14,5 тонн, иметь размер грузового отсека не менее 18 метров длиной и 4,5 метров в диаметре. Это были размер и вес проектировавшегося тогда спутника оптической разведки КН-II, из которого впоследствии произошёл орбитальный телескоп Хаббл.
* Обеспечить возможность бокового маневра для орбитального корабля до 2000 километров для удобства посадки на ограниченное количество военных аэродромов.
* Для запуска на околополярные орбиты (с наклонением 56-104º) ВВС решили построить собственный технический, стартовый и посадочный комплексы на авиабазе Ванденберг в Калифорнии.

Этим требования военного ведомства к проекту спейс шаттл были ограничены.
Использовать челноки в качестве «космических бомбардировщиков» не планировалось никогда. Во всяком случае, не существует никаких документов NASA, Пентагона, или Конгресса США, свидетельствующих о таких намерениях. Не упоминаются «бомбардировочные» мотивы ни в мемуарах, ни в частной переписке участников создания системы спейс шаттл.
Проект космического бомбардировщика X-20 Dyna Soar официально стартовал 24 октября 1957 года. Однако, с развитием МБР шахтного базирования и атомного подводного флота, вооружённого баллистическими ракетами, создание орбитальных бомбардировщиков в США было признано нецелесообразным. Уже после 1961 года из проекта X-20 Dyna Soar исчезают упоминания о «бомбардировочных» задачах, но остаются разведывательные и «инспекционные». 23 февраля 1962 г. Министр обороны Макнамара одобрил последнюю реструктуризацию программы. С этого момента Dyna-Soar официально называлась научно-исследовательской программой, имеющей целью исследовать и показать возможность выполнения пилотируемым орбитальным планером маневрирования при входе в атмосферу и посадки на взлетно-посадочную полосу в заданном месте Земли с необходимой точностью. К середине 1963 г. Министерство Обороны серьезно сомневалось относительно необходимости программы Dyna-Soar. 10 декабре 1963 г., Министр обороны Макнамара отменил Dyna-Soar.
При принятии этого решения было учтено, что космические аппараты такого класса не могут «висеть» на орбите достаточно продолжительное время, чтобы считать их «орбитальными платформами», а запуск каждого корабля на орбиту занимает даже не часы, а сутки и требует применения ракет носителей тяжёлого класса, что не позволяет их использовать ни для первого, ни для ответного ядерного удара.
Многие технические и технологические наработки программы Dyna-Soar были впоследствии использованы при создании орбитальных кораблей типа спейс шаттл.
Советское руководство, внимательно наблюдавшее за развитием программы спейс шаттл, но предполагая худшее, искало «скрытую военную угрозу», что сформировало два основных предположения:

* Возможно использование космических челноков в качестве носителей ядерного оружия (это предположение в корне неверно по вышеупомянутым причинам).
* Возможно использование космических челноков для похищения с орбиты Земли советских спутников и ДОС (долговременных обитаемых станций) Алмаз ОКБ-52 В. Челомея. Для защиты, советские ДОС предполагалось оснащать даже автоматическими пушками конструкции Нудельмана - Рихтера (ОПС был оснащён такой пушкой). Предположение о «похищениях» основывалось исключительно на габаритах грузового отсека и возвращаемой полезной нагрузке, открыто объявленным американскими разработчиками шаттлов, близким к габаритам и массе «Алмазов». О габаритах и весе разрабатывавшегося в то же время разведспутника HK-II советское руководство информировано не было.
В результате, советская космическая отрасль получила задание создать многоразовую космическую систему с характеристиками аналогичными системе спейс шаттл, но с чётко определённым военным назначением, как орбитальное средство доставки термоядерного оружия.


Задачи

Корабли спейс шаттл используются для вывода грузов на орбиты высотой 200-500 км, проведения научных исследований, обслуживания орбитальных космических аппаратов (монтажные и ремонтные работы).
Шаттлом «Дискавери» в апреле 1990 года был доставлен на орбиту телескоп Хаббл (полёт STS-31). На шаттлах «Колумбия», «Дискавери», «Индевор» и «Атлантис» были осуществлены четыре экспедиции по обслуживанию телескопа Хаббл. Последняя экспедиция шаттла к Хабблу состоялась в мае 2009 года. Так как с 2010 года НАСА запланировала прекратить полёты шаттлов, это была последняя экспедиция человека к телескопу, ибо эти миссии невозможно выполнить какими-либо другими имеющимися космическими аппаратами.
Шаттл «Индевор» с открытым грузовым отсеком.

В 1990-е годы шаттлы принимали участие в совместной российско-американской программе «Мир - Спейс шаттл». Было осуществлено девять стыковок со станцией «Мир».
В течение всех двадцати лет, когда шаттлы были в эксплуатации, они постоянно развивались и модифицировались. Было сделано более тысячи значительных и незначительных модификаций к изначальному проекту шаттла.
Шаттлы играют очень важную роль в осуществлении проекта по созданию Международной космической станции (МКС). Так, например, модули МКС, из которых собрана кроме российского модуля «Звезда», не имеют своих двигательных установок (ДУ), а значит, не могут самостоятельно маневрировать на орбите для поиска, сближения и стыковки со станцией. Поэтому их нельзя просто «забрасывать» на орбиту обыкновенными носителями типа «Протон». Единственная возможность собирать станции из таких модулей - использование кораблей типа спейс шаттл с их большими грузовыми отсеками или, гипотетически, использовать орбитальные «буксиры», которые смогли бы отыскивать модуль, выведенный на орбиту «Протоном», стыковаться с ним и подводить его к станции для стыковки.
Фактически, без кораблей типа шаттл, строительство модульных орбитальных станций типа МКС (из модулей без ДУ и систем навигации) было бы невозможным.
После катастрофы «Колумбии» в эксплуатации остаются три шаттла - «Дискавери», «Атлантис» и «Индевор». Эти остающиеся шаттлы должны обеспечить достройку МКС до 2010 года. НАСА объявило об окончании эксплуатации шаттлов в 2010 году.
Шаттл «Атлантис», в своём последнем рейсе на орбиту (STS-132) доставил на МКС российский исследовательский модуль «Рассвет».
Технические данные


Твердотопливный ускоритель


Внешний топливный бак

Бак содержит топливо и окислитель для трёх жидкостных двигателей SSME (или RS-24) на орбитере и не снабжён собственными двигателями.
Внутри топливный бак разделён на две секции. Верхнюю треть бака занимает ёмкость предназначенная для охлаждённого до температуры −183 °C (−298 °F) жидкого кислорода. Объём этой ёмкости составляет 650 тыс. литров (143 тыс. галлонов). Нижние две трети бака предназначены для охлаждённого до температуры −253 °C (−423 °F) жидкого водорода. Объём этой ёмкости составляет 1,752 млн литров (385 тыс. галлонов).


Орбитер

Кроме трёх основных двигателей орбитера на старте иногда используются два двигателя системы орбитального маневрирования (OMS), каждый тягой 27 кН. Топливо и окислитель системы OMS хранятся на челноке, используются на орбите и для возвращения на Землю.



Размеры Спейс шаттла

Размеры Спейс шаттла по сравнению с «Союзом»
Стоимость
В 2006 году общие расходы составили 160 млрд долл., к этому времени было выполнено 115 запусков (см.: en:Space Shuttle program#Costs). Средние расходы на каждый полёт составили 1,3 млрд долл., но основная часть расходов (проектирование, модернизация и др.) не зависит от числа запусков.
Стоимость каждого полёта шаттла составляет около 60 млн долл. На обеспечение 22 полётов шаттлов с середины 2005 года по 2010 год в бюджете NASA заложено около 1 миллиарда 300 миллионов долл. прямых затрат.
За эти деньги орбитер шаттла может доставлять за один рейс к МКС 20-25 тонн груза, включая модули МКС, и плюс к этому 7-8 астронавтов.
Сниженная в последние годы практически до себестоимости, цена запуска Протон-М с выводимой нагрузкой в 22 т составляет 25 млн долл. Таким весом может обладать любой отдельно летающий космический аппарат, выводимый на орбиту носителем типа «Протон».
Модули, присоединяемые к МКС, не могут выводиться на орбиту ракетами-носителями, так как их надо доставить к станции и пристыковать, для чего необходимо орбитальное маневрирование, на которое модули орбитальной станции сами по себе неспособны. Маневрирование осуществляется орбитальными кораблями (в перспективе - орбитальными буксирами), а не ракетами-носителями.
Грузовые корабли «Прогресс», снабжающие МКС, выводятся на орбиту носителями типа «Союз» и способны доставить к станции не более 1,5 тонн груза. Стоимость запуска одного грузового корабля «Прогресс» на носителе «Союз» определяется примерно 70 миллионов долл., а для замены одного рейса шаттла потребуется не менее 15 рейсов «Союз - Прогресс», что в общей сложности превышает миллиард долларов.
Однако, после завершения строительства орбитальной станции, при отсутствии необходимости доставлять к МКС новые модули, использовать шаттлы с их огромными грузовыми отсеками становится нецелесообразным.
В своем последнем рейсе шаттл «Атлантис» доставил на МКС, кроме астронавтов, «всего» 8 тонн грузов, включая новый российский исследовательский модуль, новые ноутбук компьютеры, продовольствие, воду и другие расходуемые материалы.
Фотогалерея

Спейс Шаттл на стартовам столе. Мыс Канаверал, Флорида

Посадка шаттла «Атлантис».

Гусеничный транспортёр НАСА перевозит космический челнок «Дискавери (шаттл)» к стартовой площадке.

советский шаттл "Буран"

Шаттл в полете

Посадка шаттла Индевор

Шаттл на стартовой площадке

Видео
Последняя посадка шаттла "Атлантис"

Ночной старт Дискавери