Как решать уравнения методом интервалов. Метод интервалов, примеры, решения


Метод интервалов – простой способ решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной.

1. Рассмотрим, например, такое неравенство

Метод интервалов позволяет решить его за пару минут.

В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.

Метод интервалов основан на следующем свойстве дробно-рациональной функции.

Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует.

Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида .

Где и - корни квадратного уравнения .

Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.

Нули знаменателя и - выколотые точки, так как в этих точках функция в левой части неравенства не определена (на нуль делить нельзя). Нули числителя и - закрашены, так как неравенство нестрогое. При и наше неравенство выполняется, так как обе его части равны нулю.

Эти точки разбивают ось на промежутков.

Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным - либо "плюс", либо "минус".

И поэтому для определения знака функции на каждом таком промежутке мы берем любую точку, принадлежащую этому промежутку. Ту, которая нам удобна.
. Возьмем, например, и проверим знак выражения в левой части неравенства. Каждая из "скобок" отрицательная. Левая часть имеет знак .

Следующий промежуток: . Проверим знак при . Получаем, что левая часть поменяла знак на .

Возьмем . При выражение положительно - следовательно, оно положительно на всем промежутке от до .

При левая часть неравенства отрицательна.

И, наконец, class="tex" alt="x>7"> . Подставим и проверим знак выражения в левой части неравенства. Каждая "скобочка" положительна. Следовательно, левая часть имеет знак .

Мы нашли, на каких промежутках выражение положительно. Осталось записать ответ:

Ответ: .

Обратите внимание: знаки на промежутках чередуются. Это произошло потому, что при переходе через каждую точку ровно один из линейных множителей поменял знак, а остальные сохранили его неизменным .

Мы видим, что метод интервалов очень прост. Чтобы решить дробно-рациональное неравенство методом интервалов, приводим его к виду:

Или class="tex" alt="\genfrac{}{}{}{0}{\displaystyle P\left(x \right)}{\displaystyle Q\left(x \right)} > 0"> , или , или .

(в левой части - дробно-рациональная функция, в правой - нуль).

Затем - отмечаем на числовой прямой точки, в которых числитель или знаменатель обращаются в нуль.
Эти точки разбивают всю числовую прямую на промежутки, на каждом из которых дробно-рациональная функция сохраняет свой знак.
Остается только выяснить ее знак на каждом промежутке.
Мы делаем это, проверяя знак выражения в любой точке, принадлежащей данному промежутку. После этого - записываем ответ. Вот и всё.

Но возникает вопрос: всегда ли знаки чередуются? Нет, не всегда! Надо быть внимательным и не расставлять знаки механически и бездумно.

2. Рассмотрим еще одно неравенство.

Class="tex" alt="\genfrac{}{}{}{0}{\displaystyle \left(x-2 \right)^2}{\displaystyle \left(x-1 \right)\left(x-3 \right)}>0">

Снова расставляем точки на оси . Точки и - выколотые, поскольку это нули знаменателя. Точка - тоже выколота, поскольку неравенство строгое.

При числитель положителен, оба множителя в знаменателе отрицательны. Это легко проверить, взяв любое число с данного промежутка, например, . Левая часть имеет знак :

При числитель положителен; первый множитель в знаменателе положителен, второй множитель отрицателен. Левая часть имеет знак :

При ситуация та же! Числитель положителен, первый множитель в знаменателе положителен, второй отрицателен. Левая часть имеет знак :

Наконец, при class="tex" alt="x>3"> все множители положительны, и левая часть имеет знак :

Ответ: .

Почему нарушилось чередование знаков? Потому что при переходе через точку "ответственный" за неё множитель не изменил знак . Следовательно, не изменила знак и вся левая часть нашего неравенства.

Вывод: если линейный множитель стоит в чётной степени (например, в квадрате), то при переходе через точку знак выражения в левой части не меняется . В случае нечётной степени знак, разумеется, меняется.

3. Рассмотрим более сложный случай. От предыдущего отличается тем, что неравенство нестрогое:

Левая часть та же, что и в предыдущей задаче. Та же будет и картина знаков:

Может, и ответ будет тем же? Нет! Добавляется решение Это происходит потому, что при и левая, и правая части неравенства равны нулю - следовательно, эта точка является решением.

Ответ: .

В задаче на ЕГЭ по математике такая ситуация встречается часто. Здесь абитуриенты попадают в ловушку и теряют баллы. Будьте внимательны!

4. Что делать, если числитель или знаменатель не удается разложить на линейные множители? Рассмотрим такое неравенство:

Квадратный трехчлен на множители разложить нельзя: дискриминант отрицателен, корней нет. Но ведь это и хорошо! Это значит, что знак выражения при всех одинаков, а конкретно - положителен. Подробнее об этом можно прочитать в статье о свойствах квадратичной функции .

И теперь мы можем поделить обе части нашего неравенства на величину , положительную при всех . Придём к равносильному неравенству:

Которое легко решается методом интервалов.

Обратите внимание - мы поделили обе части неравенства на величину, о которой точно знали, что она положительна. Конечно, в общем случае не стоит умножать или делить неравенство на переменную величину, знак которой неизвестен.

5 . Рассмотрим еще одно неравенство, на вид совсем простое:

Так и хочется умножить его на . Но мы уже умные, и не будем этого делать. Ведь может быть как положительным, так и отрицательным. А мы знаем, что если обе части неравенства умножить на отрицательную величину - знак неравенства меняется.

Мы поступим по другому - соберём всё в одной части и приведём к общему знаменателю. В правой части останется нуль:

Class="tex" alt="\genfrac{}{}{}{0}{\displaystyle x-2}{\displaystyle x}>0">

И после этого - применим метод интервалов .

Метод интервалов – простой способ решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной.

1. Рассмотрим, например, такое неравенство

Метод интервалов позволяет решить его за пару минут.

В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.

Метод интервалов основан на следующем свойстве дробно-рациональной функции.

Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует.

Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида .

Где и - корни квадратного уравнения .

Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.

Нули знаменателя и - выколотые точки, так как в этих точках функция в левой части неравенства не определена (на нуль делить нельзя). Нули числителя и - закрашены, так как неравенство нестрогое. При и наше неравенство выполняется, так как обе его части равны нулю.

Эти точки разбивают ось на промежутков.

Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным - либо "плюс", либо "минус".

И поэтому для определения знака функции на каждом таком промежутке мы берем любую точку, принадлежащую этому промежутку. Ту, которая нам удобна.
. Возьмем, например, и проверим знак выражения в левой части неравенства. Каждая из "скобок" отрицательная. Левая часть имеет знак .

Следующий промежуток: . Проверим знак при . Получаем, что левая часть поменяла знак на .

Возьмем . При выражение положительно - следовательно, оно положительно на всем промежутке от до .

При левая часть неравенства отрицательна.

И, наконец, class="tex" alt="x>7"> . Подставим и проверим знак выражения в левой части неравенства. Каждая "скобочка" положительна. Следовательно, левая часть имеет знак .

Мы нашли, на каких промежутках выражение положительно. Осталось записать ответ:

Ответ: .

Обратите внимание: знаки на промежутках чередуются. Это произошло потому, что при переходе через каждую точку ровно один из линейных множителей поменял знак, а остальные сохранили его неизменным .

Мы видим, что метод интервалов очень прост. Чтобы решить дробно-рациональное неравенство методом интервалов, приводим его к виду:

Или class="tex" alt="\genfrac{}{}{}{0}{\displaystyle P\left(x \right)}{\displaystyle Q\left(x \right)} > 0"> , или , или .

(в левой части - дробно-рациональная функция, в правой - нуль).

Затем - отмечаем на числовой прямой точки, в которых числитель или знаменатель обращаются в нуль.
Эти точки разбивают всю числовую прямую на промежутки, на каждом из которых дробно-рациональная функция сохраняет свой знак.
Остается только выяснить ее знак на каждом промежутке.
Мы делаем это, проверяя знак выражения в любой точке, принадлежащей данному промежутку. После этого - записываем ответ. Вот и всё.

Но возникает вопрос: всегда ли знаки чередуются? Нет, не всегда! Надо быть внимательным и не расставлять знаки механически и бездумно.

2. Рассмотрим еще одно неравенство.

Class="tex" alt="\genfrac{}{}{}{0}{\displaystyle \left(x-2 \right)^2}{\displaystyle \left(x-1 \right)\left(x-3 \right)}>0">

Снова расставляем точки на оси . Точки и - выколотые, поскольку это нули знаменателя. Точка - тоже выколота, поскольку неравенство строгое.

При числитель положителен, оба множителя в знаменателе отрицательны. Это легко проверить, взяв любое число с данного промежутка, например, . Левая часть имеет знак :

При числитель положителен; первый множитель в знаменателе положителен, второй множитель отрицателен. Левая часть имеет знак :

При ситуация та же! Числитель положителен, первый множитель в знаменателе положителен, второй отрицателен. Левая часть имеет знак :

Наконец, при class="tex" alt="x>3"> все множители положительны, и левая часть имеет знак :

Ответ: .

Почему нарушилось чередование знаков? Потому что при переходе через точку "ответственный" за неё множитель не изменил знак . Следовательно, не изменила знак и вся левая часть нашего неравенства.

Вывод: если линейный множитель стоит в чётной степени (например, в квадрате), то при переходе через точку знак выражения в левой части не меняется . В случае нечётной степени знак, разумеется, меняется.

3. Рассмотрим более сложный случай. От предыдущего отличается тем, что неравенство нестрогое:

Левая часть та же, что и в предыдущей задаче. Та же будет и картина знаков:

Может, и ответ будет тем же? Нет! Добавляется решение Это происходит потому, что при и левая, и правая части неравенства равны нулю - следовательно, эта точка является решением.

Ответ: .

В задаче на ЕГЭ по математике такая ситуация встречается часто. Здесь абитуриенты попадают в ловушку и теряют баллы. Будьте внимательны!

4. Что делать, если числитель или знаменатель не удается разложить на линейные множители? Рассмотрим такое неравенство:

Квадратный трехчлен на множители разложить нельзя: дискриминант отрицателен, корней нет. Но ведь это и хорошо! Это значит, что знак выражения при всех одинаков, а конкретно - положителен. Подробнее об этом можно прочитать в статье о свойствах квадратичной функции .

И теперь мы можем поделить обе части нашего неравенства на величину , положительную при всех . Придём к равносильному неравенству:

Которое легко решается методом интервалов.

Обратите внимание - мы поделили обе части неравенства на величину, о которой точно знали, что она положительна. Конечно, в общем случае не стоит умножать или делить неравенство на переменную величину, знак которой неизвестен.

5 . Рассмотрим еще одно неравенство, на вид совсем простое:

Так и хочется умножить его на . Но мы уже умные, и не будем этого делать. Ведь может быть как положительным, так и отрицательным. А мы знаем, что если обе части неравенства умножить на отрицательную величину - знак неравенства меняется.

Мы поступим по другому - соберём всё в одной части и приведём к общему знаменателю. В правой части останется нуль:

Class="tex" alt="\genfrac{}{}{}{0}{\displaystyle x-2}{\displaystyle x}>0">

И после этого - применим метод интервалов .

Метод интервалов - это универсальный способ решения практически любых неравенств, которые встречаются в школьном курсе алгебры. Он основан на следующих свойствах функций:

1. Непрерывная функция g(x) может изменить знак только в той точке, в которой она равна 0. Графически это означает, что график непрерывной функции может перейти из одной полуплоскости в другую, только если пересечет ось абсцисс (мы помним, что ордината любой точки, лежащей на оси ОХ (оси абсцисс) равна нулю, то есть значение функции в этой точке равно 0):

Мы видим, что функция y=g(x), изображенная на графике пересекает ось ОХ в точках х= -8, х=-2, х=4, х=8. Эти точки называются нулями функции. И в этих же точках функция g(x) меняет знак.

2. Функция также может менять знак в нулях знаменателя - простейший пример хорошо известная функция :

Мы видим, что функция меняет знак в корне знаменателя, в точке , но при этом не обращается в ноль ни в одной точке. Таким образом, если функция содержит дробь, она может менять знак в корнях знаменателя.

2. Однако, функция не всегда меняет знак в корне числителя или в корне знаменателя. Например, функция y=x 2 не меняет знак в точке х=0:

Т.к. уравнение x 2 =0 имеет два равных корня х=0, в точке х=0 функция как бы дважды обращается в 0. Такой корень называется корнем второй кратности.

Функция меняет знак в нуле числителя, , но не меняет знак в нуле знаменателя: , так как корень - корень второй кратности, то есть четной кратности:


Важно! В корнях четной кратности функция знак не меняет.

Обратите внимание! Любое нелинейное неравенство школьного курса алгебры, как правило, решается с помощью метода интервалов.

Предлагаю вам подробный , следуя которому вы сможете избежать ошибок при решении нелинейных неравенств .

1. Для начала необходимо привести неравенство к виду

Р(х)V0,

где V- знак неравенства: <,>,≤ или ≥. Для этого необходимо:

а) перенести все слагаемые в левую часть неравенства,

б) найти корни получившегося выражения,

в) разложить левую часть неравенства на множители

г) одинаковые множители записать в виде степени.

Внимание! Последнее действие необходимо сделать, чтобы не ошибиться с кратностью корней - если в результате получится множитель в четной степени, значит, соответствующий корень имеет четную кратность.

2. Нанести найденные корни на числовую ось.

3. Если неравенство строгое, то кружки, обозначающие корни на числовой оси оставляем "пустыми", если неравенство нестрогое, то кружки закрашиваем.

4. Выделяем корни четной кратности - в них Р(х) знак не меняет.

5. Определяем знак Р(х) на самом правом промежутке. Для этого берем произвольное значение х 0 , которое больше большего корня и подставляем в Р(х) .

Если P(x 0)>0 (или ≥0), то в самом правом промежутке ставим знак "+".

Если P(x 0)<0 (или ≤0), то в самом правом промежутке ставим знак "-".

При переходе через точку, обозначающую корень четной кратности знак НЕ МЕНЯЕТСЯ.

7. Еще раз смотрим на знак исходного неравенства, и выделяем промежутки нужного нам знака.

8. Внимание! Если наше неравенство НЕСТРОГОЕ, то условие равенства нулю проверяем отдельно.

9. Записываем ответ.

Если исходное неравенство содержит неизвестное в знаменателе , то также переносим все слагаемых влево, и приводим левую часть неравенства к виду

(где V- знак неравенства: < или >)

Строгое неравенство такого вида равносильно неравенству

НЕстрогое неравенство вида

равносильно системе :

На практике, если функция имеет вид , то поступаем следующим образом:

  1. Находим корни числителя и знаменателя.
  2. Наносим их на ось. Все кружки оставляем пустыми. Затем, если неравенство не строгое, то корни числителя закрашиваем, а корни знаменателя всегда оставляем пустыми.
  3. Далее следуем общему алгоритму:
  4. Выделяем корни четной кратности (если числитель и знаменатель содержат одинаковые корни, то считаем, сколько раз встречаются одинаковые корни). В корнях четной кратности смены знака не происходит.
  5. Выясняем знак на самом правом промежутке.
  6. Расставляем знаки.
  7. В случае нестрого неравенства условие равенства условие равенства нулю проверяем отдельно.
  8. Выделяем нужные промежутки и отдельно стоящие корни.
  9. Записываем ответ.

Чтобы лучше понять алгоритм решения неравенств методом интервалов , посмотрите ВИДЕОУРОК, в котором подробно разбирается пример решения неравенства методом интервалов .


Метод интервалов (или как его еще иногда называют метод промежутков) – это универсальный метод решения неравенств. Он подходит для решения разнообразных неравенств, однако наиболее удобен в решении рациональных неравенств с одной переменной. Поэтому в школьном курсе алгебры метод интервалов вплотную привязывают именно к рациональным неравенствам, а решению других неравенств с его помощью практически не уделяют внимания.

В этой статье мы детально разберем метод интервалов и затронем все тонкости решения неравенств с одной переменной с его помощью. Начнем с того, что приведем алгоритм решения неравенств методом интервалов. Дальше поясним, на каких теоретических аспектах он базируется, и разберем шаги алгоритма, в частности, подробно остановимся на определении знаков на интервалах. После этого перейдем к практике и покажем решения нескольких типовых примеров. А в заключение рассмотрим метод интервалов в общем виде (то есть, без привязки к рациональным неравенствам), другими словами, обобщенный метод интервалов.

Навигация по странице.

Алгоритм

Знакомство с методом интервалов в школе начинается при решении неравенств вида f(x)<0 (знак неравенства может быть и другим ≤, > или ≥), где f(x) – это либо , представленный в виде произведения линейных двучленов с 1 при переменной x и/или квадратных трехчленов со старшим коэффициентом 1 и с отрицательным дискриминантом и их степеней, либо отношение таких многочленов. Для наглядности приведем примеры подобных неравенств: (x−5)·(x+5)≤0 , (x+3)·(x 2 −x+1)·(x+2) 3 ≥0 , .

Чтобы сделать дальнейший разговор предметным, сразу запишем алгоритм решения неравенств указанного выше вида методом интервалов, а потом разберемся, что да как да почему. Итак, по методу интервалов:

  • Сначала находятся нули числителя и нули знаменателя. Для этого числитель и знаменатель выражения в левой части неравенства приравниваются к нулю, и решаются полученные уравнения.
  • После этого точки, соответствующие найденным нулям, отмечаются черточками на . Достаточно схематического чертежа, на котором не обязательно соблюдать масштаб, главное придерживаться расположения точек относительно друг друга: точка с меньшей координатой находится левее точки с большей координатой. После этого выясняется, какими следует их изобразить: обычными или выколотыми (с пустым центром). При решении строгого неравенства (со знаком < или >) все точки изображаются выколотыми. При решении нестрогого неравенства (со знаком ≤ или ≥) точки, отвечающие нулям знаменателя, делаются выколотыми, а оставшиеся отмеченные черточками точки – обычными. Эти точки разбивают координатную прямую на несколько числовых промежутков .
  • Дальше определяются знаки выражения f(x) из левой части решаемого неравенства на каждом промежутке (как это делается, подробно расскажем в одном из следующих пунктов), и над ними проставляются + или − в соответствии с определенными на них знаками.
  • Наконец, при решении неравенства со знаком < или ≤ изображается штриховка над промежутками, отмеченными знаком −, а при решении неравенства со знаком > или ≥ - над промежутками, отмеченными знаком +. В результате получается , которое и является искомым решением неравенства.

Заметим, что приведенный алгоритм согласован с описанием метода интервалов в школьных учебниках .

На чем базируется метод?

Подход, лежащий в основе метода интервалов, имеет место в силу следующего свойства непрерывной функции : если на интервале (a, b) функция f непрерывна и не обращается в нуль, то она на этом интервале сохраняет постоянный знак (от себя добавим, что аналогичное свойство справедливо и для числовых лучей (−∞, a) и (a, +∞) ). А это свойство в свою очередь следует из теоремы Больцано-Коши (ее рассмотрение выходит за рамки школьной программы), формулировку и доказательство которой при необходимости можно найти, например, в книге .

Для выражений f(x) , имеющих указанный в предыдущем пункте вид, постоянство знака на промежутках можно обосновать и иначе, отталкиваясь от свойств числовых неравенств и учитывая правила умножения и деления чисел с одинаковыми знаками и разными знаками.

В качестве примера рассмотрим неравенство . Нули его числителя и знаменателя разбивают числовую прямую на три промежутка (−∞, −1) , (−1, 5) и (5, +∞) . Покажем, что на промежутке (−∞, −1) выражение из левой части неравенства имеет постоянный знак (можно взять и другой промежуток, рассуждения будут аналогичными). Возьмем любое число t из этого промежутка. Оно, очевидно, будет удовлетворять неравенству t<−1 , и так как −1<5 , то по свойству транзитивности, оно же будет удовлетворять и неравенству t<5 . Из этих неравенств в силу свойств числовых неравенств следует, что t+1<0 и t−5<0. То есть, t+1 и t−5 – отрицательные числа, не зависимо от того, какое конкретно число t мы возьмем из промежутка (−∞, −1) . Тогда позволяет констатировать, что значение выражения будет положительным, откуда следует, что значение выражения будет положительным при любом значении x из промежутка (−∞, −1) . Итак, на указанном промежутке выражение имеет постоянный знак, причем, это знак +.

Так мы плавно подошли к вопросу определения знаков на промежутках, но не будем перескакивать через первый шаг метода интервалов, подразумевающий нахождение нулей числителя и знаменателя.

Как находить нули числителя и знаменателя?

С нахождением нулей числителя и знаменателя дроби указанного в первом пункте вида обычно не возникает никаких проблем. Для этого выражения из числителя и знаменателя приравниваются к нулю, и решаются полученные уравнения. Принцип решения уравнений такого вида подробно изложен в статье решение уравнений методом разложения на множители . Здесь лишь ограничимся примером.

Рассмотрим дробь и найдем нули ее числителя и знаменателя. Начнем с нулей числителя. Приравниваем числитель к нулю, получаем уравнение x·(x−0,6)=0 , от которого переходим к совокупности двух уравнений x=0 и x−0,6=0 , откуда находим два корня 0 и 0,6 . Это искомые нули числителя. Теперь находим нули знаменателя. Составляем уравнение x 7 ·(x 2 +2·x+7) 2 ·(x+5) 3 =0 , оно равносильно совокупности трех уравнений x 7 =0 , (x 2 +2·x+7) 2 =0 , (x+5) 3 =0 , и дальше x=0 , x 2 +2·x+7=0 , x+5=0 . Корень первого из этих уравнений очевиден, это 0 , второе уравнение корней не имеет, так как его дискриминант отрицательный, а корень третьего уравнения есть −5 . Итак, мы нашли нули знаменателя, их оказалось два: 0 и −5 . Заметим, что 0 оказался как нулем числителя, так и нулем знаменателя.

Для нахождения нулей числителя и знаменателя в общем случае, когда в левой части неравенства дробь, но не обязательно рациональная, также числитель и знаменатель приравниваются к нулю, и решаются соответствующие уравнения.

Как определять знаки на интервалах?

Самый надежный способ определения знака выражения из левой части неравенства на каждом промежутке состоит в вычислении значения этого выражения в какой-либо одной точке из каждого промежутка. При этом искомый знак на промежутке совпадает со знаком значения выражения в любой точке этого промежутка. Поясним это на примере.

Возьмем неравенство . Выражение из его левой части не имеет нулей числителя, а нулем знаменателя является число −3. Оно делит числовую прямую на два промежутка (−∞, −3) и (−3, +∞) . Определим знаки на них. Для этого возьмем по одной точке из этих промежутков, и вычислим значения выражения в них. Сразу заметим, что целесообразно брать такие точки, чтобы проводить вычисления было легко. Например, из первого промежутка (−∞, −3) можно взять −4 . При x=−4 имеем , получили значение со знаком минус (отрицательное), поэтому, на этом интервале будет знак минус. Переходим к определению знака на втором промежутке (−3, +∞) . Из него удобно взять 0 (если 0 входит в промежуток, то целесообразно всегда брать его, так как при x=0 вычисления оказываются наиболее простыми). При x=0 имеем . Это значение со знаком плюс (положительное), поэтому, на этом интервале будет знак плюс.

Существует и другой подход к определению знаков, состоящий в нахождении знака на одном из интервалов и его сохранении или изменении при переходе к соседнему интервалу через нуль. Нужно придерживаться следующего правила. При переходе через нуль числителя, но не знаменателя, или через нуль знаменателя, но не числителя, знак изменяется, если степень выражения, дающего этот нуль, нечетная, и не изменяется, если четная. А при переходе через точку, являющуюся одновременно и нулем числителя, и нулем знаменателя, знак изменяется, если сумма степеней выражений, дающих этот нуль, нечетная, и не изменяется, если четная.

Кстати, если выражение в правой части неравенства имеет вид, указанный в начале первого пункта этой статьи, то на крайнем правом промежутке будет знак плюс.

Чтобы все стало понятно, рассмотрим пример.

Пусть перед нами неравенство , и мы его решаем методом интервалов. Для этого находим нули числителя 2 , 3 , 4 и нули знаменателя 1 , 3 , 4 , отмечаем их на координатной прямой сначала черточками

затем нули знаменателя заменяем изображениями выколотых точек

и так как решаем нестрогое неравенство, то оставшиеся черточки заменяем обыкновенными точками

А дальше наступает момент определения знаков на промежутках. Как мы заметили перед этим примером, на крайнем правом промежутке (4, +∞) будет знак +:

Определим остальные знаки, при этом будем продвигаться от промежутка к промежутку справа налево. Переходя к следующему интервалу (3, 4) , мы переходим через точку с координатой 4 . Это нуль как числителя, так и знаменателя, эти нули дают выражения (x−4) 2 и x−4 , сумма их степеней равна 2+1=3 , а это нечетное число, значит, при переходе через эту точку нужно изменить знак. Поэтому, на интервале (3, 4) будет знак минус:

Идем дальше к интервалу (2, 3) , при этом переходим через точку с координатой 3 . Это нуль также как числителя, так и знаменателя, его дают выражения (x−3) 3 и (x−3) 5 , сумма их степеней равна 3+5=8 , а это четное число, поэтому, знак останется неизменным:

Продвигаемся дальше к интервалу (1, 2) . Путь к нему нам преграждает точка с координатой 2 . Это нуль числителя, его дает выражение x−2 , его степень равна 1 , то есть она нечетная, следовательно, при переходе через эту точку знак изменится:

Наконец, осталось определить знак на последнем интервале (−∞, 1) . Чтобы попасть на него, нам необходимо преодолеть точку с координатой 1 . Это нуль знаменателя, его дает выражение (x−1) 4 , его степень равна 4 , то есть, она четная, следовательно, знак при переходе через эту точку изменяться не будет. Так мы определили все знаки, и рисунок приобретает такой вид:

Понятно, что применение рассмотренного метода особенно оправдано, когда вычисление значения выражения связано с большим объемом работы. К примеру, вычислите-ка значение выражения в любой точке интервала .

Примеры решения неравенств методом интервалов

Теперь можно собрать воедино всю представленную информацию, достаточную для решения неравенств методом интервалов, и разобрать решения нескольких примеров.

Пример.

Решите неравенство .

Решение.

Проведем решение этого неравенства методом интервалов. Очевидно, нули числителя это 1 и −5 , а нули знаменателя и 1 . Отмечаем их на числовой прямой, при этом точки с координатами и 1 выколотые как нули знаменателя, а оставшийся нуль числителя −5 изобразим обычной точкой, так как решаем нестрогое неравенство:

Теперь проставляем знаки на промежутках, придерживаясь правила сохранения или изменения знака при переходе через нули. Над крайним справа промежутком будет знак + (это можно проверить, вычислив значение выражения в левой части неравенства в какой-либо точке этого промежутка, например, при x=3 ). При переходе через знак изменяем, при переходе через 1 – оставляем таким же, и при переходе через −5 опять оставляем знак без изменения:

Так как мы решаем неравенство со знаком ≤, то осталось изобразить штриховку над промежутками, отмеченными знаком −, и по полученному изображению записать ответ.

Итак, искомое решение таково: .

Ответ:

.

Справедливости ради обратим внимание на то, что в подавляющем большинстве случаев при решении рациональных неравенств их предварительно приходится преобразовывать к нужному виду, чтобы стало возможным их решение методом интервалов. Как проводить такие преобразования мы подробно обсудим в статье решение рациональных неравенств , а сейчас приведем пример, иллюстрирующий один важный момент, касающийся квадратных трехчленов в записи неравенств.

Пример.

Найдите решение неравенства .

Решение.

С первого взгляда на данное неравенство кажется, что его вид подходит для применения метода интервалов. Но не помешает проверить, действительно ли дискриминанты квадратных трехчленов в его записи отрицательны. Вычислим их для успокоения совести. Для трехчлена x 2 +3·x+3 имеем D=3 2 −4·1·3=−3<0 , а для трехчлена x 2 +2·x−8 получаем D’=1 2 −1·(−8)=9>0 . Это означает, что для придания этому неравенству нужного вида требуются преобразования. В данном случае достаточно трехчлен x 2 +2·x−8 представить как (x+4)·(x−2) , и дальше решать методом интервалов неравенство .

Ответ:

.

Обобщенный метод интервалов

Обобщенный метод интервалов позволяет решать неравенства вида f(x)<0 (≤, >, ≥), где f(x) – произвольное с одной переменной x . Запишем алгоритм решения неравенств обобщенным методом интервалов :

  • Сначала надо f и нули этой функции.
  • На числовой прямой отмечаются граничные, в том числе и отдельные точки области определения. Например, если областью определения функции служит множество (−5, 1]∪{3}∪ (на интервале (−6, 4) знак не определяем, так как он не является частью области определения функции). Для этого возьмем по одной точке из каждого промежутка, например, 16 , 8 , 6 и −8 , и вычислим в них значение функции f :

    Если возникли вопросы как было выяснено, какими являются вычисленные значения функции, положительными или отрицательными, то изучите материал статьи сравнение чисел .

    Расставляем только что определенные знаки, и наносим штриховку над промежутками со знаком минус:

    В ответ записываем объединение двух промежутков со знаком −, имеем (−∞, −6]∪(7, 12) . Обратите внимание, что −6 включено в ответ (соответствующая точка сплошная, а не выколотая). Дело в том, что это не нуль функции (который при решении строгого неравенства мы бы не включили в ответ), а граничная точка области определения (она цветная, а не черная), при этом входящая в область определения. Значение функции в этой точке отрицательно (о чем свидетельствует знак минус над соответствующим промежутком), то есть, она удовлетворяет неравенству. А вот 4 включать в ответ не нужно (как и весь промежуток ∪(7, 12) .

    Список литературы.

    1. Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
    2. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
    3. Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
    4. Кудрявцев Л. Д. Курс математического анализа (в двух томах): Учебник для студентов университетов и втузов. – М.: Высш. школа, 1981, т. 1. – 687 с., ил.

    На этом уроке мы продолжим решение рациональных неравенств методом интервалов для более сложных неравенств. Рассмотрим решение дробно-линейных и дробно-квадратичных неравенств и сопутствующие задачи.

    Теперь возвращаемся к неравенству

    Рассмотрим некоторые сопутствующие задачи.

    Найти наименьшее решение неравенства.

    Найти число натуральных решений неравенства

    Найти длину интервалов, составляющих множество решений неравенства.

    2. Портал Естественных Наук ().

    3. Электронный учебно-методический комплекс для подготовки 10-11 классов к вступительным экзаменам по информатике, математике, русскому языку ().

    5. Центр образования «Технология обучения» ().

    6. Раздел College.ru по математике ().

    1. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М. : Мнемозина, 2002.-143 с.: ил. №№ 28(б,в); 29(б,в); 35(а,б); 37(б,в); 38(а).