Что делает черная дыра в космосе. Все о черных дырах


Из всех известных человечеству объектов, которые находятся в космическом пространстве, черные дыры производят самое жуткое и непонятное впечатление. Это ощущение охватывает практически каждого человека при упоминании черных дыр, несмотря на то, что о них человечеству стало известно уже более чем полтора столетия. Первые знания о данных явлениях были получены еще задолго до публикаций Эйнштейна о теории относительности. Но реальное подтверждение существования этих объектов было получено не так давно.

Конечно же, черные дыры по праву славятся своими странными физическими характеристиками, которые порождают еще больше загадок во Вселенной. Они с легкостью бросают вызов всем космическим законам физики и космической механики. Для того чтобы осознать все детали и принципы существования такого явления, как космическая дыра, нам нужно ознакомиться с современными достижениями в астрономии и применить фантазию, кроме того, придется выйти за рамки стандартных понятий. Для более легкого осознания и ознакомления с космическими дырами портал сайт подготовил много интересной информации, которая касается данных явлений во Вселенной.

Особенности черных дыр от портала сайт

Прежде всего, нужно отметить, что черные дыры не берутся из ниоткуда, они образуются из звезд, которые имеют гигантские размеры и массу. Кроме того, самой большой особенностью и уникальностью каждой черной дыры является то, что они обладают очень сильным гравитационным притяжением. Сила притяжения объектов к черной дыре превышает вторую космическую скорость. Такие показатели гравитации говорят о том, что с поля действия черной дыры не могут вырваться даже лучи света, поскольку они обладают значительно меньшей скоростью.

Особенностью притяжения можно назвать то, что оно притягивает все объекты, которые находятся в непосредственной близости. Чем больше объект, который проходит в близости черной дыры, тем большего влияния и притягивания он получит. Соответственно можно сделать вывод, что чем больше объект, тем сильнее его притягивает черная дыра, а для того, чтобы избежать подобного влияния космическое тело должно обладать очень высокими скоростными показателями передвижения.

Также можно с уверенность отметить, что во всей Вселенной нет такого тела, которое смогло бы избежать притяжения черной дыры, оказавшись в непосредственной близости, поскольку даже самый быстрый по скорости световой поток не может избежать этого влияния. Для осознания особенностей черных дыр отлично подходит теория относительности, выведенная еще Эйнштейном. Согласно этой теории гравитация способна влиять на время и искажение пространства. Также она гласит, что чем больше объект, находящийся в космическом пространстве, тем сильнее он тормозит время. В близости от самой черной дыры время как бы вовсе останавливается. При попадании космического корабля в поле действия космической дыры можно было бы наблюдать, как он с приближением замедлялся бы, а в конечном итоге и вовсе исчез.

Не стоит очень сильно пугаться таких явлений, как черные дыры и верить всей ненаучной информации, которая может существовать на данный момент. Прежде всего, нужно развеять самый распространенный миф о том, что черные дыры могут всасывать всю окружающую их материю и объекты, и при этом они увеличиваются и поглощают все больше и больше. Все это не совсем верно. Да, действительно, они могут поглощать космические тела и материю, но только те, которые находятся на определенном расстоянии от самой дыры. Кроме своей мощной гравитации, они мало чем отличаются от обычных звезд с гигантской массой. Даже когда наше Солнце превратится в черную дыру, оно сможет затянуть только объекты, расположенные на небольшом расстоянии, а все планеты так и останутся вращаться по привычным орбитам.

Обращаясь к теории относительности, можно сделать вывод, что все объекты с сильной гравитацией могут влиять на искривление времени и пространства. Кроме того, чем больше масса тела, тем и искажение будет сильнее. Так, совсем недавно ученым удалось увидеть это на практике, когда можно было созерцать другие объекты, которые должны были быть недоступны нашему взору из-за огромных космических тел таких, как галактики или черные дыры. Все это возможно за счет того, что проходящие рядом от черной дыры или другого тела световые лучи очень сильно изгибаются под влиянием их гравитации. Такой тип искажения позволяет ученым заглянуть значительно дальше в космическое пространство. Но при таких исследованиях очень сложно определить реальное местонахождение исследуемого тела.

Черные дыры не появляются из ниоткуда, они образовываются в результате взрыва сверхмассивных звезд. Причем для того чтобы сформировалась черная дыра, масса взорванной звезды должна быть как минимум в десять раз больше, чем масса Солнца. Каждая звезда существует за счет термоядерных реакций, которые проходят внутри звезды. При этом выделяется сплав водорода в процессе синтеза, но и он не может покинуть зону действия звезды, поскольку ее гравитация притягивает водород обратно. Весь этот процесс и позволяет существовать звездам. Синтез водорода и гравитация звезды – достаточно отлаженные механизмы, но нарушение этого баланса может привести к взрыву звезды. В большинстве случаев к нему приводят исчерпания ядерного топлива.

В зависимости от массы звезды возможны несколько сценариев их развития после взрыва. Так, массивные звезды образуют поле взрыва сверхновой звезды, причем большинство из них так и остаются позади ядра бывшей звезды, такие объекты астронавты называют Белыми Карликами. В большинстве случаев вокруг этих тел образуется газовое облако, которое удерживается гравитацией этого карлика. Возможен и иной путь развития сверхмассивных звезд, при котором полученная черная дыра будет очень сильно притягивать всю материю звезды к ее центру, что приведет к сильному ее сжатию.

Такие сжатые тела именуются как нейтронные звезды. В самых редких случаях после взрыва звезды возможно образование черной дыры в принятом нами понимании данного явления. Но чтобы была создана дыра, масса звезды должна быть просто гигантской. В этом случае при нарушении баланса ядерных реакций гравитация звезды просто сходит с ума. При этом она начинает активно коллапсировать, после чего становится только точкой в пространстве. Другими словами, можно сказать, что звезда как физический объект перестает существовать. Несмотря на то, что она исчезает, за ней образуется черная дыра с теми же показателями силы тяжести и массой.

Именно коллапсирование звезд и приводит к тому, что они полностью исчезают, а на их месте формируется черная дыра с теми же физическими свойствами, как и исчезнувшая звезда. Отличием становится только большая степень сжатия дыры, чем был объем звезды. Самой главной особенностью всех черных дыр является их сингулярность, которая и определяет ее центр. Эта область противостоит всем законам физики, материи и пространства, которые перестают существовать. Для осознания понятия сингулярности можно сказать, что это барьер, который называют горизонтом космических событий. Также она является внешней границей действия черной дыры. Сингулярность можно назвать точкой невозврата, поскольку именно там начинает действовать гигантская сила тяготения дыры. Даже свет, который пересекает этот барьер, не в силах вырваться.

Горизонт событий обладает таким притягивающим эффектом, который притягивает все тела со скоростью света, с приближением до самой черной дыры скоростные показатели еще больше увеличиваются. Именно поэтому все объекты, попавшие в зону действия этой силы, обречены на то, что их затянет дыра. Нужно отметить, что подобные силы способны видоизменять тело, попавшее в силу действия такого притяжения, после чего они протягиваются в тонкую струну, а потом и вовсе перестают существовать в пространстве.

Расстояние между горизонтом событий и сингулярностью может отличаться, это пространство названо радиусом Шварцшильда. Именно поэтому чем больше размер черной дыры, тем большим будет и радиус действия. К примеру, можно сказать, что черная дыра, которая была бы массой как наше Солнце, имела бы радиус Шварцшильда в три километра. Соответственно большие черные дыры имеют больший радиус действия.

Поиск черных дыр – достаточно сложный процесс, поскольку свет не может вырваться из них. Поэтому поиск и определение опираются только на косвенные доказательства их существования. Самым простым методом их нахождения, который используют ученые, является поиск их по нахождению мест в темном пространстве, если они обладают большой массой. В большинстве случаев астрономам удается находить черные дыры в двойных звездных системах или же в центрах галактик.

Большинство астрономов склонно считать, что в центре нашей галактики также существует сверхмощная черная дыра. Это утверждение порождает вопрос, сможет ли эта дыра поглотить все в нашей галактике? В действительности это невозможно, поскольку сама дыра имеет такую же массу, как и звезды, потому что она и создана из звезды. Тем более все расчеты ученых не предвещают никаких глобальных событий, связанных с этим объектом. Более того, еще миллиарды лет космические тела нашей галактики будут спокойно вращаться вокруг этой черной дыры без каких-либо изменений. Доказательством существования дыры в центре Млечного Пути может служить зафиксированные учеными рентгеновские волны. А большинство астрономов склонно считать, что черные дыры их активно излучают в огромном количестве.

Достаточно часто в нашей галактике распространены звездные системы, состоящие из двух звезд, причем зачастую одна из них может становиться черной дырой. В этом варианте черная дыра поглощает все тела на своем пути, при этом материя начинает вращаться вокруг нее, за счет чего формируется так называемый диск ускорения. Особенностью можно назвать то, что она увеличивает скорость вращения и приближается к центру. Именно материя, которая попадает в середину черной дыры, и излучает рентгеновское излучение, а сама материя при этом разрушается.

Двойные системы звезд являются самыми первыми кандидатами на статус черной дыры. В таких системах наиболее легко можно найти черную дыру, за счет объема видимой звезды можно просчитать и показатели невидимого собрата. В настоящее время самым первым кандидатом на статус черной дыры может стать звезда из созвездия Лебедя, которая активно излучает рентгеновские лучи.

Делая вывод из всего вышеуказанного о черных дырах можно сказать, что они не такие уж и опасные явления, конечно же, в случае непосредственной близости они являются самыми мощными из-за силы гравитации объектами в космическом пространстве. Поэтому можно сказать, что они особо ничем не отличаются от иных тел, основной их особенностью является сильное гравитационное поле.

Относительно назначения черных дыр было предложено огромное количество теорий, среди которых были даже абсурдные. Так, по одной из них ученые считали, что черные дыры могут порождать новые галактики. Данная теория опирается на то, что наш мир является достаточно благоприятным местом для зарождения жизни, но в случае изменения одного из факторов жизнь была бы невозможной. В силу этого сингулярность и особенности изменения физических свойств в черных дырах могут породить совершенно новую Вселенную, которая будет значительно отличаться от нашей. Но это лишь теория и достаточно слабая в силу того, что не существует никаких доказательств подобного воздействия черных дыр.

Что касается черных дыр, то они не только могут поглощать материю, но они также могут испаряться. Подобное явление было доказано несколько десятилетий тому назад. Это испарение может привести к тому, что черная дыра потеряет всю свою массу, а дальше и вовсе исчезнет.

Все это является самой малой частицей информации о черных дырах, которую Вы можете узнать на портале сайт. Также мы владеем огромным количеством интересной информации о других космических явлениях.

Дата публикации: 27.09.2012

Большинство людей смутно или неправильно представляют себе, что такое чёрные дыры. Между тем, это настолько глобальные и мощные объекты Вселенной, по сравнению с которыми наша Планета и вся наша жизнь - ничто.

Сущность

Это космический объект, обладающий настолько огромной гравитацией, что поглощает всё, что попадёт в его пределы. По сути, чёрная дыра - это объект, который не выпускает даже свет и искривляет пространство-время. Даже время возле чёрных дыр течёт медленнее.

На самом деле, существование чёрных дыр - это только теория (и немного практики). У учёных есть предположения и практические наработки, но плотно изучить чёрные дыры пока не удалось. А потому чёрными дырами называют условно все объекты, подходящие под данное описание. Чёрные дыры мало изучены, а потому очень много вопросов остаются нерешёнными.

У любой чёрной дыры есть горизонт событий - та граница, после которой ничто уже не сможет выбраться. Более того, чем ближе объект находится к чёрной дыре, тем он медленнее движется.

Образование

Существует несколько видов и способов образования чёрных дыр:
- образование чёрных дыр в результате образования Вселенной. Такие чёрные дыры появились сразу после Большого Взрыва.
- умирающие звёзды. Когда звезда теряет свою энергию и термоядерные реакции прекращаются - звезда начинает сжиматься. В зависимости от степени сжатия, выделяют нейтронные звёзды, белые карлики и, собственно, чёрные дыры.
- получение с помощью эксперимента. Например, в коллайдере можно создать квантовую чёрную дыру.

Версии

Многие учёные склонны к мнению, что чёрные дыры всю поглощённую материю выбрасывают в другом месте. Т.е. должны существовать «белые дыры», которые действуют по иному принципу. Если в чёрную дыру можно попасть, но нельзя выбраться, то в белую дыру, наоборот, не попасть. Главный аргумент учёных - это зафиксированные в космосе резкие и мощные выплески энергии.

Сторонники теории струн вообще создали свою модель чёрной дыры, которая не уничтожает информацию. Их теория называется «Fuzzball» - она позволяет ответить на вопросы, связанные с сингулярностью и исчезновением информации.

Что такое сингулярность и исчезновение информации? Сингулярность - это такая точка в пространстве, характеризующаяся бесконечным давлением и плотностью. Многих смущает факт сингулярности, ведь физики не могут работать с бесконечными числами. Многие уверены, что сингулярность в чёрной дыре есть, но её свойства описываются весьма поверхностно.

Если говорить простым языком, то все проблемы и недопонимание выходит из соотношения квантовой механики и гравитации. Пока учёные не могут создать теорию, объединяющую их. А потому и возникают проблемы с чёрной дырой. Ведь чёрная дыра вроде как уничтожает информацию, но при этом нарушаются основы квантовой механики. Хотя совсем недавно С.Хокинг, вроде бы, решил данный вопрос, заявив что информация в чёрных дырах всё-таки не уничтожается.

Стереотипы

Во-первых, чёрные дыры не могут существовать бесконечно долго. А всё благодаря испарению Хокинга. А потому не нужно думать, что чёрные дыры рано или поздно поглотят Вселенную.

Во-вторых, наше Солнце не станет чёрной дырой. Так как массы нашей звезды будет недостаточно. Наше солнце скорее превратится в белого карлика (и то не факт).

В-третьих, Большой Адронный Коллайдер не уничтожит нашу Землю, создав чёрную дыру. Даже если они специально создадут чёрную дыру и «выпустят» её, то из-за её малых размеров, она будет поглощать нашу планету очень и очень долго.

В-четвёртых, не нужно думать, что чёрная дыра - это «дыра» в космосе. Чёрная дыра - это сферический объект. Отсюда большинство мнений, что чёрные дыры ведут в параллельную Вселенную. Однако этот факт пока ещё не удалось доказать.

В-пятых, чёрная дыра не имеет цвета. Её обнаруживают либо по рентгеновскому излучению, либо на фоне других галактик и звёзд (эффект линзы).

Из-за того, что люди часто путают чёрные дыры с червоточинами (которые на самом деле существуют), то среди обычных людей данные понятия не различаются. Червоточина и вправду позволяет перемещаться в пространстве и времени, но пока только в теории.

Сложные вещи простым языком

Сложно описывать такой феномен как чёрная дыра простым языком. Если вы считаете себя технарём, разбирающимся в точных науках, то советую почитать труды учёных непосредственно. Если же вы хотите узнать об этом феномене больше, то почитайте труды Стивена Хокинга. Он многое сделал для науки, и особенно в сфере чёрных дыр. Именно в честь него названо испарение чёрных дыр. Он является сторонником педагогического подхода, а потому все его труды будут понятны даже обычному человек.

Книги:
- «Чёрные дыры и молодые Вселенные» 1993 года.
- «Мир в ореховой скорлупке 2001» года.
- «Кратчайшая история Вселенной 2005» года.

Особенно хочу порекомендовать его научно-популярные фильмы, которые расскажут вам понятным языком не только о чёрных дырах, но и о Вселенной вообще:
- «Вселенная Стивена Хокинга» - сериал из 6 эпизодов.
- «Вглубь Вселенной со Стивеном Хокингом» - сериал из 3 эпизодов.
Все эти фильмы переведены на русский язык, их часто показываются на каналах Discovery.

Спасибо за внимание!


Последние советы раздела «Наука & Техника»:

Вам помог этот совет? Вы можете помочь проекту, пожертвовав на его развитие любую сумму по своему усмотрению. Например, 20 рублей. Или больше:)

Черная дыра - один из самых загадочных объектов во Вселенной. О возможности существования черных дыр говорили многие известные ученые, в том числе и Альберт Эйнштейн. Черные дыры своим названием обязаны американскому астрофизику Джону Уиллеру. Во Вселенной можно встретить два типа черных дыр. Первый - это массивные черные дыры - огромные тела, масса которых в миллионы раз больше массы Солнца. Такие объекты, как предполагают ученые, размещены в центре галактик. В центре нашей Галактики тоже находится гигантская Черная дыра. Ученым пока не удалось выяснить причины появления таких огромных космических тел.

Точка зрения

Современная наука недооценивает значение понятия «энергия времени», введенного в научный обиход советским ученым-астрофизиком Н.А. Козыревым.

Мы доработали представление об энергии времени, в результате чего появилась новая философская теория - «идеальный материализм». Эта теория дает альтернативное объяснение природы и строения черных дыр. Черным дырам в теории идеального материализма отводится ключевая роль, и, в частности, в процессах происхождения и баланса энергии времени. Теория объясняет, почему в центрах практически всех галактик располагаются сверхмассивные черные дыры. На сайте можно будет ознакомиться с этой теорией, но после соответствующей подготовки. см. материалы сайта).

Область в пространстве и времени, притяжение гравитации которой имеет настолько большую силу, что её не могут покинуть даже объекты, движущиеся со скоростью света, называется чёрной дырой. Граница черной дыры обозначается как понятие «горизонт событий», а её размер - как радиус гравитации. В самом простом случае он равен радиусу Шварцшильда.

Тот факт, что существование чёрных дыр теоретически возможно, можно доказать из некоторых точных уравнений Эйнштейна. Первое из них было получено в 1915 году тем самым Карлом Шварцшильдом. Неизвестно кто был первым, изобретшим данный термин. Можно только говорить о том, что само обозначение явления популяризовалось благодаря Джону Арчибальду Уилеру, впервые опубликовавшему лекцию «Наша Вселенная: известное и неизвестное (Our Universe: the Known and Unknown)», где и было употреблено. Намного раньше эти объекты назывались «сколлапсировавшими звёздами» или «коллапсарами».

Вопрос о том, существуют ли черные дыры на самом деле, связан с реальным существованием гравитации. В современной науке самой реальной теорией гравитации является общая теория относительности, которая четко определяет возможность существования чёрных дыр. Но, всё же, их существование возможно и в рамках других теорий, поэтому данные постоянно анализируются и интерпретируются.

Утверждение о существовании реально существующих чёрных дыр следует понимать в подтверждении существования плотных и массивных астрономических объектов, которые можно интерпретировать как черные дыры теории относительности. Помимо этого, к подобному явлению можно относить звезды на поздних стадиях коллапса. Современные астрофизики не придают значения различию между такими звездами и настоящими черными дырами.

Многие из тех, кто изучали или изучают до сих пор астрономию, знают, что такое черная дыра и откуда она появляется . Но все же, для простых людей, кто этим особо не интересовался, я вкратце всё объясню.

Черная дыра — это некая область в пространстве космоса или даже времени в нем. Только это не обычная область. Она обладает очень сильной гравитацией (притяжением). При том настолько сильной, что из черной дыры не может выбраться, если попадет туда, нечто! Даже солнечные лучи не смогут избежать попадания в черную дыру, если та проходит рядом. Хотя, знайте, что солнечные лучи (свет) движутся со скоростью света - 300.000 км/сек.

Ранее черные дыры называли по другому: коллапсары, сколлапсировавшие звёзды, застывшие звезды и так далее. Почему? Потому что черные дыры появляются благодаря умершим звездам.

Дело в том, что, когда звезда истощает весь свой запас энергии, она становится очень горячим гигантом, и в итоге, она взрывается. Её ядро, с некоторой вероятностью может очень сильно сжаться. При том, с невероятной скоростью. В некоторых случаях, после взрыва звезды, образовывается черная, невидимая дыра, которая пожирает всё на своем пути. Все объекты, которые даже двигаются со скоростью света.

Черной дыре не важно какие объекты поглощать. Это могут быть как космические корабли, так и лучи солнца. Не важно с какой скоростью движется объект. Черной дыре также не важно и какова масса объекта. Она может сожрать всё, начиная от космических микробов или пыли, вплоть до самих звезд.

К великому сожалению, ещё никто не выяснил того, что твориться внутри черной дыры. Одни предполагают, что объект, который попадает в черную дыру, разрывает с невероятной силой. Другие же считают, что выход из черной дыры может вести в другую, некую вторую вселенную. Третьи же полагают, что (наиболее вероятно), если вы пройдете от входа до выхода черной дыры, она просто-напросто может выбросить вас в другой части вселенной.

Чёрная дыра в космосе

Чёрная дыра - это космический объект невероятной плотности, обладающий абсолютной гравитацией, такой, что любое космическое тело и даже само пространство и время, поглощаются ею.

Чёрные дыры управляют самой эволюцией вселенной . они на центральном месте, но их не возможно увидеть, можно обнаружить их признаки. Хотя чёрные дыры обладают свойством разрушать, они также помогают строить галактики.

Некоторые учёные считают, что чёрные дыры являются воротами в параллельные вселенные . что вполне может быть. Существует мнение что у чёрных дыр есть противоположно, так называемые белые дыры . обладающие анти-гравитационными свойствами.

Чёрная дыра рождается внутри самых крупных звёзд, когда те умирают, сила тяжести разрушает их, приводя тем самым к мощному взрыву сверхновой звезды .

Существования черных дыр было предсказано Карлом Шварцшильдом

Карл Шварцшильд был первым, кто применил общую теорию относительности Эйнштейна, для того, чтобы обосновать существование «точки невозврата». Сам Эйнштейн не задумывался о черных дырах, хотя его теория позволяет предсказать их существование.

Шварцшильд сделал свое предположение в 1915 году, сразу вслед за тем, как Эйнштейн опубликовал общую теорию относительности. Тогда же возник термин «радиус Шварцшильда» - это величина, которая показывает, как сильно вам придется сжать объект, чтобы он стал черной дырой.

Теоретически, черной дырой может стать все, что угодно, при достаточной степени сжатия. Чем плотнее объект, тем более сильное гравитационное поле он создает. Например, Земля стала бы черной дырой, если бы ее массой обладал объект величиной с арахис.

Источники: www.alienguest.ru, cosmos-online.ru, kak-prosto.net, nasha-vselennaya.ru, www.qwrt.ru

Священный колодец майя

Вторжение в подсознание

Термоядерный ракетный двигатель – первые испытания

Шабаш на Лысой горе

Американизм – новая идеология трансформации мира

Ракетный двигатель EmDrive: полет без рабочего тела

Информационные агентства распространили сообщение об успешном испытании специалистов NASA ракетного двигателя EmDrive. Подробного описания принципа действия данного двигателя не приводится,однако заявляется...

Города Ирака: Эрбиль

Город Эрбиль (Арбиль, Хаулер или Хевлер) является столицей Иракского Курдистана. Расположенный в междуречье у подножия гор, Эрбиль является одним...

Новый дом на новом месте

Решение о строительстве собственного дома предполагает тщательное продумывание проекта с учетом времени и средств, вложенных в новое жилье. На первом этапе строительства...

История города Алеппо

Древняя и невероятно красивая страна, в которой тесно переплетаются христианство и ислам, а также множество культур и народов это Сирия. Алеппо...

Языковые туры в Англию

Практика, всегда надежнее теории. С этой мыслью жители страны бывшего СССР отправляются на территорию Англии с целью закрепить умения...

Жемчужина Южнобережья

Ялос! Ялос! – радостно закричали греческие моряки, когда после многодневного, утомительного, морского путешествия наконец-то увидели берег. Вот почему, когда греки...

Для того, чтобы образовалась черная дыра, нужно сжать тело до некоторой критической плотности так, чтобы радиус сжатого тела оказался равным его гравитационному радиусу. Величина этой критической плотности обратно пропорциональна квадрату массы черной дыры.

Для типичной черной дыры звездной массы (M =10M sun) гравитационный радиус равен 30 км, а критическая плотность 2·10 14 г/см 3 , то есть двести миллионов тонн в кубическом сантиметре. Эта плотность очень велика по сравнению со средней плотностью Земли (5,5 г/см 3), она равна плотности вещества атомного ядра.

Для черной дыры в ядре галактики (M =10 10 M sun) гравитационный радиус равен 3·10 15 см = 200 а.е., что в пять раз больше расстояния от Солнца до Плутона (1 астрономическая единица - среднее расстояние от Земли до Солнца - равна 150 млн. км или 1,5·10 13 см). Критическая плотность при этом равна 0,2·10 –3 г/см 3 , что в несколько раз меньше плотности воздуха, равной 1,3·10 –3 г/см 3 (!).

Для Земли (M =3·10 –6 M sun) гравитационный радиус близок к 9 мм, а соответствующая критическая плотность чудовищно велика: ρ кр = 2·10 27 г/см 3 , что на 13 порядков выше плотности атомного ядра.

Если мы возьмем некий воображаемый сферический пресс и будем сжимать Землю, сохраняя ее массу, то когда мы уменьшим радиус Земли (6370 км) в четыре раза, ее вторая космическая скорость возрастет вдвое и станет равной 22,4 км/c. Если же мы сожмем Землю так, что ее радиус станет равным примерно 9 мм, то вторая космическая скорость примет значение, равное скорости света c = 300000 км/с.

Дальше пресс не понадобится - сжатая до таких размеров Земля уже сама будет сжиматься. В конце концов, на месте Земли образуется черная дыра, радиус горизонта событий которой будет близок к 9 мм (если пренебречь вращением образовавшейся черной дыры). В реальных условиях, разумеется, никакого сверхмощного пресса нет - «работает» гравитация. Именно поэтому черные дыры могут образовываться лишь при коллапсе внутренних частей весьма массивных звезд, у которых гравитация достаточно сильна, чтобы сжать вещество до критической плотности.

Эволюция звезд

Черные дыры образуются на конечных стадиях эволюции массивных звезд. В недрах обычных звезд идут термоядерные реакции, выделяется огромная энергия и поддерживается высокая температура (десятки и сотни миллионов градусов). Силы гравитации стремятся сжать звезду, а силы давления горячего газа и излучения противостоят этому сжатию. Поэтому звезда находится в гидростатическом равновесии.

Кроме того, в звезде может существовать тепловое равновесие, когда энерговыделение, обусловленное термоядерными реакциями в ее центре, в точности равно мощности, излучаемой звездой с поверхности. При сжатии и расширении звезды тепловое равновесие нарушается. Если звезда стационарна, то ее равновесие устанавливается так, что отрицательная потенциальная энергия звезды (энергия гравитационного сжатия) по абсолютной величине всегда вдвое больше тепловой энергии. Из-за этого звезда обладает удивительным свойством - отрицательной теплоемкостью. Обычные тела имеют положительную теплоемкость: нагретый кусок железа, остывая, то есть, теряя энергию, понижает свою температуру. У звезды же все наоборот: чем больше она теряет энергии в виде излучения, тем выше становится температура в ее центре.

Эта странная, на первый взгляд, особенность находит простое объяснение: звезда, излучая, медленно сжимается. При сжатии потенциальная энергия превращается в кинетическую энергию падения слоев звезды, и ее недра разогреваются. Причем тепловая энергия, приобретаемая звездой в результате сжатия, вдвое больше энергии, которая теряется в виде излучения. В итоге температура недр звезды растет, и осуществляется непрерывный термоядерный синтез химических элементов. Например, реакция преобразования водорода в гелий в нынешнем Солнце идет при температуре 15 миллионов градусов. Когда, через 4 миллиарда лет, в центре Солнца водород весь превратится в гелий, для дальнейшего синтеза атомов углерода из атомов гелия потребуется значительно более высокая температура, около 100 миллионов градусов (электрический заряд ядер гелия вдвое больше, чем ядер водорода, и чтобы сблизить ядра гелия на расстояние 10 –13 см требуется гораздо большая температура). Именно такая температура будет обеспечена благодаря отрицательной теплоемкости Солнца к моменту зажигания в его недрах термоядерной реакции превращения гелия в углерод.

Белые карлики

Если масса звезды невелика, так что масса ее ядра, затронутого термоядерными превращениями, менее 1,4M sun , термоядерный синтез химических элементов может прекратиться из-за так называемого вырождения электронного газа в ядре звезды. В частности, давление вырожденного газа зависит от плотности, но не зависит от температуры, поскольку энергия квантовых движений электронов много больше энергии их теплового движения.

Высокое давление вырожденного электронного газа эффективно противодействует силам гравитационного сжатия. Поскольку давление не зависит от температуры, потеря энергии звездой в виде излучения не приводит к сжатию ее ядра. Следовательно, гравитационная энергия не выделяется в виде добавочного тепла. Поэтому температура в эволюционирующем вырожденном ядре не растет, что приводит к прерыванию цепочки термоядерных реакций.

Внешняя водородная оболочка, не затронутая термоядерными реакциями, отделяется от ядра звезды и образует планетарную туманность, светящуюся в линиях излучения водорода, гелия и других элементов. Центральное компактное и сравнительно горячее ядро проэволюционировавшей звезды небольшой массы представляет собой белый карлик - объект с радиусом порядка радиуса Земли (~10 4 км), массой менее 1,4M sun и средней плотностью порядка тонны в кубическом сантиметре. Белые карлики наблюдаются в большом количестве. Их полное число в Галактике достигает 10 10 , то есть около 10% от всей массы наблюдаемого вещества Галактики.

Термоядерное горение в вырожденном белом карлике может быть неустойчивым и приводить к ядерному взрыву достаточно массивного белого карлика с массой, близкой к так называемому чандрасекаровскому пределу (1,4M sun). Такие взрывы выглядят, как вспышки сверхновых I типа, у которых в спектре нет линий водорода, а только линии гелия, углерода, кислорода и других тяжелых элементов.

Нейтронные звезды

Если ядро звезды вырождено, то при приближении его массы к пределу 1,4M sun обычное вырождение электронного газа в ядре сменяется так называемым релятивистским вырождением.

Квантовые движения вырожденных электронов становятся такими быстрыми, что их скорости приближаются к скорости света. При этом упругость газа падает, его способность противодействовать силам гравитации уменьшается, и звезда испытывает гравитационный коллапс. Во время коллапса электроны захватываются протонами, и происходит нейтронизация вещества. Это ведет к формированию из массивного вырожденного ядра нейтронной звезды.

Если исходная масса ядра звезды превышает 1,4M sun , то в ядре достигается высокая температура, и вырождение электронов не происходит на протяжении всей ее эволюции. В этом случае работает отрицательная теплоемкость: по мере потери энергии звездой в виде излучения температура в ее недрах растет, и идет непрерывная цепочка термоядерных реакций превращения водорода в гелий, гелия в углерод, углерода в кислород и так далее, вплоть до элементов группы железа. Реакция термоядерного синтеза ядер элементов, более тяжелых, чем железо, идет уже не с выделением, а с поглощением энергии. Поэтому, если масса ядра звезды, состоящего в основном из элементов группы железа, превышает чандрасекаровский предел 1,4M sun , но меньше так называемого предела Оппенгеймера–Волкова ~3M sun , то в конце ядерной эволюции звезды происходит гравитационный коллапс ядра, в результате которого внешняя водородная оболочка звезды сбрасывается, что наблюдается как вспышка сверхновой звезды II типа, в спектре которой наблюдаются мощные линии водорода.

Коллапс железного ядра приводит к формированию нейтронной звезды.

При сжатии массивного ядра звезды, достигшей поздней стадии эволюции, температура поднимается до гигантских значений порядка миллиарда градусов, когда ядра атомов начинают разваливаться на нейтроны и протоны. Протоны поглощают электроны, превращаются в нейтроны, испуская при этом нейтрино. Нейтроны же, согласно квантово–механическому принципу Паули, при сильном сжатии начинают эффективно отталкиваться друг от друга.

Когда масса коллапсирующего ядра меньше 3M sun , скорости нейтронов значительно меньше скорости света и упругость вещества, обусловленная эффективным отталкиванием нейтронов, может уравновесить силы гравитации и привести к образованию устойчивой нейтронной звезды.

Впервые возможность существования нейтронных звезд была предсказана в 1932 году выдающимся советским физиком Ландау сразу после открытия нейтрона в лабораторных экспериментах. Радиус нейтронной звезды близок к 10 км, ее средняя плотность составляет сотни миллионов тонн в кубическом сантиметре.

Когда масса коллапсирующего ядра звезды больше 3M sun , то, согласно существующим представлениям, образующаяся нейтронная звезда, остывая, коллапсирует в черную дыру. Коллапсу нейтронной звезды в черную дыру способствует также обратное падение части оболочки звезды, сброшенной при взрыве сверхновой.

Нейтронная звезда, как правило, быстро вращается, поскольку породившая ее обычная звезда может иметь значительный угловой момент. Когда ядро звезды коллапсирует в нейтронную звезду, характерные размеры звезды уменьшаются от R = 10 5 –10 6 км до R ≈ 10 км. С уменьшением размера звезды уменьшается ее момент инерции. Для сохранения момента количества движения должна резко вырасти скорость осевого вращения. Например, если Солнце, вращающееся с периодом около месяца, сжать до размеров нейтронной звезды, то период вращения уменьшится до 10 –3 секунды.

Одиночные нейтронные звезды с сильным магнитным полем проявляют себя как радиопульсары - источники строго периодических импульсов радиоизлучения, возникающих при преобразовании энергии быстрого вращения нейтронной звезды в направленное радиоизлучение. В двойных системах аккрецирующие нейтронные звезды демонстрируют феномен рентгеновского пульсара и рентгеновского барстера 1-го типа.

У черной дыры строго периодических пульсаций излучения ожидать не приходится, поскольку черная дыра не имеет наблюдаемой поверхности и магнитного поля. Как часто выражаются физики, черные дыры не имеют «волос» - все поля и все неоднородности вблизи горизонта событий излучаются при формировании черной дыры из коллапсирующей материи в виде потока гравитационных волн. В итоге, у образовавшейся черной дыры имеются лишь три характеристики: масса, угловой момент и электрический заряд. Все индивидуальные свойства коллапсирующего вещества при образовании черной дыры забываются: например, черные дыры, образовавшиеся из железа и из воды, имеют при прочих равных условиях одинаковые характеристики.

Как предсказывает Общая теория относительности (ОТО), звезды, массы железных ядер которых в конце эволюции превышают 3M sun , испытывают неограниченное сжатие (релятивистский коллапс) с образованием черной дыры. Это объясняется тем, что в ОТО силы гравитации, стремящиеся сжать звезду, определяются плотностью энергии, а при громадных плотностях вещества, достигаемых при сжатии столь массивного ядра звезды, главный вклад в плотность энергии вносит уже не энергия покоя частиц, а энергия их движения и взаимодействия. Получается, что в ОТО давление вещества при очень больших плотностях как бы само «весит»: чем больше давление, тем больше плотность энергии и, следовательно, тем больше силы гравитации, стремящиеся сжать вещество. Кроме того, при сильных гравитационных полях становятся принципиально важными эффекты искривления пространства–времени, что также способствует неограниченному сжатию ядра звезды и превращению его в черную дыру (рис. 3).

В заключение отметим, что черные дыры, образовавшиеся в нашу эпоху (например, черная дыра в системе Лебедь X-1), строго говоря, не являются стопроцентными черными дырами, поскольку из-за релятивистского замедления хода времени для далекого наблюдателя горизонты событий у них еще не сформировались. Поверхности таких коллапсирующих звезд выглядят для земного наблюдателя как застывшие, бесконечно долго приближающиеся к своим горизонтам событий.

Чтобы черные дыры из таких коллапсирующих объектов сформировались окончательно, мы должны прождать все бесконечно большое время существования нашей Вселенной. Следует подчеркнуть, однако, что уже в первые секунды релятивистского коллапса поверхность коллапсирующей звезды для наблюдателя с Земли приближается очень близко к горизонту событий, и все процессы на этой поверхности бесконечно замедляются.

Правообладатель иллюстрации Thinkstock

Возможно, вы думаете, что человека, попавшего в черную дыру, ждет мгновенная смерть. В действительности же его судьба может оказаться намного более удивительной, рассказывает корреспондент .

Что произойдет с вами, если вы попадете внутрь черной дыры? Может быть, вы думаете, что вас раздавит - или, наоборот, разорвет на клочки? Но в действительности все гораздо страннее.

В тот момент, когда вы попадете в черную дыру, реальность разделится надвое. В одной реальности вас мгновенно испепелит, в другой же - вы нырнете вглубь черной дыры живым и невредимым.

Внутри черной дыры не действуют привычные нам законы физики. Согласно Альберту Эйнштейну, гравитация искривляет пространство. Таким образом, при наличии объекта достаточной плотности пространственно-временной континуум вокруг него может деформироваться настолько, что в самой реальности образуется прореха.

Массивная звезда, израсходовавшая все топливо, может превратиться именно в тот тип сверхплотной материи, который необходим для возникновения подобного искривленного участка Вселенной. Звезда, схлопывающаяся под собственной тяжестью, увлекает за собой пространственно-временной континуум вокруг нее. Гравитационное поле становится настолько сильным, что даже свет больше не может из него вырваться. В результате область, в которой ранее находилась звезда, становится абсолютно черной - это и есть черная дыра.

Правообладатель иллюстрации Thinkstock Image caption Никто точно не знает, что происходит внутри черной дыры

Внешняя поверхность черной дыры называется горизонтом событий. Это сферическая граница, на которой достигается баланс между силой гравитационного поля и усилиями света, пытающегося покинуть черную дыру. Если пересечь горизонт событий, вырваться будет уже невозможно.

Горизонт событий лучится энергией. Благодаря квантовым эффектам, на нем возникают потоки горячих частиц, излучаемых во Вселенную. Это явление называется излучением Хокинга - в честь описавшего его британского физика-теоретика Стивена Хокинга. Несмотря на то, что материя не может вырваться за пределы горизонта событий, черная дыра, тем не менее, "испаряется" - со временем она окончательно потеряет свою массу и исчезнет.

По мере продвижения вглубь черной дыры пространство-время продолжает искривляться и в центре становится бесконечно искривленным. Эта точка известна как гравитационная сингулярность. Пространство и время в ней перестают иметь какое-либо значение, а все известные нам законы физики, для описания которых необходимы эти два понятия, больше не действуют.

Никто не знает, что именно ждет человека, попавшего в центр черной дыры. Иная вселенная? Забвение? Задняя стенка книжного шкафа, как в американском научно-фантастическом фильме "Интерстеллар"? Это загадка.

Давайте порассуждаем - на вашем примере - о том, что произойдет, если случайно попасть в черную дыру. Компанию в этом эксперименте вам составит внешний наблюдатель - назовем его Анной. Итак, Анна, находящаяся на безопасном расстоянии, в ужасе наблюдает за тем, как вы приближаетесь к границе черной дыры. С ее точки зрения события будут развиваться весьма странным образом.

По мере вашего приближения к горизонту событий Анна будет видеть, как вы вытягиваетесь в длину и сужаетесь в ширину, будто она рассматривает вас в гигантскую лупу. Кроме того, чем ближе вы будете подлетать к горизонту событий, тем больше Анне будет казаться, что ваша скорость падает.

Правообладатель иллюстрации Thinkstock Image caption В центре черной дыры пространство бесконечно искривлено

Вы не сможете докричаться до Анны (поскольку в безвоздушном пространстве звук не передается), но можете попытаться подать ей знак азбукой Морзе при помощи фонарика в вашем iPhone. Однако ваши сигналы будут достигать ее со все возрастающими интервалами, а частота света, испускаемого фонариком, будет смещаться в сторону красного (длинноволнового) участка спектра. Вот как это будет выглядеть: "Порядок, п о р я д о к, п о р я…".

Когда вы достигнете горизонта событий, то, с точки зрения Анны, замрете на месте, как если бы кто-то поставил воспроизведение на паузу. Вы останетесь в неподвижности, растянутым по поверхности горизонта событий, и вас начнет охватывать все возрастающий жар.

С точки зрения Анны, вас будут медленно убивать растяжение пространства, остановка времени и жар излучения Хокинга. Прежде чем вы пересечете горизонт событий и углубитесь в недра черной дыры, от вас останется один пепел.

Но не спешите заказывать панихиду - давайте на время забудем об Анне и посмотрим на эту ужасную сцену с вашей точки зрения. А с вашей точки зрения будет происходить нечто еще более странное, то есть ровным счетом ничего особенного.

Вы летите прямиком в одну из самых зловещих точек Вселенной, не испытывая при этом ни малейшей тряски - не говоря уже о растяжении пространства, замедлении времени или жаре излучения. Все потому, что вы находитесь в состоянии свободного падения и поэтому не чувствуете своего веса - именно это Эйнштейн назвал "самой удачной идеей" своей жизни.

Действительно, горизонт событий - это не кирпичная стена в космосе, а явление, обусловленное точкой зрения наблюдающего. Наблюдатель, остающийся снаружи черной дыры, не может заглянуть внутрь сквозь горизонт событий, но это его проблема, а не ваша. С вашей точки зрения никакого горизонта не существует.

Если бы размеры нашей черной дыры были меньше, вы и правда столкнулись бы с проблемой - гравитация действовала бы на ваше тело неравномерно, и вас вытянуло бы в макаронину. Но, по счастью для вас, данная черная дыра велика - она в миллионы раз массивнее Солнца, так что гравитационная сила достаточно слаба, чтобы можно было ею пренебречь.

Правообладатель иллюстрации Thinkstock Image caption Вы не можете вернуться и выбраться из черной дыры - точно так же, как никто из нас не способен на путешествие в прошлое

Внутри достаточно крупной черной дыры вы даже сможете вполне нормально прожить остаток жизни, пока не умрете в гравитационной сингулярности.

Вы можете спросить, насколько нормальной может быть жизнь человека, помимо воли увлекаемого к дыре в пространственно-временном континууме без шанса на то, чтобы когда-нибудь выбраться наружу?

Но если вдуматься, нам всем знакомо это ощущение - только применительно ко времени, а не к пространству. Время идет только вперед и никогда вспять, и оно действительно влечет нас за собою помимо нашей воли, не оставляя нам шанса на возвращение в прошлое.

Это не просто аналогия. Черные дыры искривляют пространственно-временной континуум до такой степени, что внутри горизонта событий время и пространство меняются местами. В каком-то смысле вас влечет к сингулярности не пространство, а время. Вы не можете вернуться назад и выбраться из черной дыры - точно так же, как никто из нас не способен на путешествие в прошлое.

Возможно, теперь вы задаетесь вопросом, что же не так с Анной. Вы летите себе в пустом пространстве черной дыры и с вами все в порядке, а она оплакивает вашу гибель, утверждая, что вас испепелило излучение Хокинга с внешней стороны горизонта событий. Уж не галлюцинирует ли она?

В действительности утверждение Анны совершенно справедливо. С ее точки зрения, вас действительно поджарило на горизонте событий. И это не иллюзия. Анна может даже собрать ваш пепел и отослать его вашим родным.

Правообладатель иллюстрации Thinkstock Image caption Горизонт событий - не кирпичная стена, он проницаем

Дело в том, что, в соответствии с законами квантовой физики, с точки зрения Анны вы не можете пересечь горизонт событий и должны остаться с внешней стороны черной дыры, поскольку информация никогда не теряется безвозвратно. Каждый бит информации, отвечающий за ваше существование, обязан оставаться на внешней поверхности горизонта событий - иначе с точки зрения Анны, будут нарушены законы физики.

С другой стороны, законы физики также требуют, чтобы вы пролетели сквозь горизонт событий живыми и невредимыми, не повстречав на своем пути ни горячих частиц, ни каких-либо иных необычных явлений. В противном случае будет нарушена общая теория относительности.

Итак, законы физики хотят, чтобы вы одновременно находились снаружи черной дыры (в виде горстки пепла) и внутри нее (в целости и сохранности). И еще один немаловажный момент: согласно общим принципам квантовой механики, информацию нельзя клонировать. Вам нужно находиться в двух местах одновременно, но при этом лишь в одном экземпляре.

Такое парадоксальное явление физики называют термином "исчезновение информации в черной дыре". По счастью, в 1990-х гг. ученым удалось этот парадокс разрешить.

Американский физик Леонард Зюсскинд понял, что никакого парадокса на самом деле нет, поскольку никто не увидит вашего клонирования. Анна будет наблюдать за одним вашим экземпляром, а вы - за другим. Вы с Анной никогда больше не встретитесь и не сможете сравнить наблюдения. А третьего наблюдателя, который мог бы наблюдать за вами как снаружи, так и изнутри черной дыры одновременно, не существует. Таким образом, законы физики не нарушаются.

Разве что вы захотите узнать, какой из ваших экземпляров реален, а какой нет. Живы вы в действительности или умерли?

Правообладатель иллюстрации Thinkstock Image caption Пролетит ли человек сквозь горизонт событий целым и невредимым или врежется в огненную стену?

Дело в том, что никакого "в действительности" нет. Реальность зависит от наблюдателя. Существует "в действительности" с точки зрения Анны и "в действительности" с вашей точки зрения. Вот и всё.

Почти всё. Летом 2012 г. физики Ахмед Альмхеири, Дональд Маролф, Джо Полчински и Джеймс Салли, коллективно известные под английской аббревиатурой из первых букв своих фамилий как AMPS, предложили мысленный эксперимент, который грозил перевернуть наше представление о черных дырах.

По словам ученых, разрешение противоречия, предложенное Зюсскиндом, основывается на том, что разногласие в оценке происходящего между вами и Анной опосредовано горизонтом событий. Неважно, действительно ли Анна видела, как один из двух ваших экземпляров погиб в огне излучения Хокинга, поскольку горизонт событий не давал ей увидеть ваш второй экземпляр, улетающей вглубь черной дыры.

Но что, если бы у Анны имелся способ узнать, что происходит по ту сторону горизонта событий, не пересекая его?

Общая теория относительности говорит нам, что это невозможно, но квантовая механика слегка размывает жесткие правила. Анна могла бы одним глазком заглянуть за горизонт событий при помощи того, что Эйнштейн называл "жутким дальнодействием".

Речь идет о квантовой запутанности - явлении, при котором квантовые состояния двух или более частиц, разделенных пространством, загадочным образом оказываются взаимозависимыми. Эти частицы теперь формируют единое и неделимое целое, а информация, необходимая для описания этого целого, заключена не в той или иной частице, а во взаимосвязи между ними.

Идея, выдвинутая AMPS, звучит следующим образом. Предположим, Анна берет частицу поблизости от горизонта событий - назовем ее частицей A.

Если ее версия произошедшего с вами соответствует действительности, то есть вас убило излучение Хокинга с внешней стороны черной дыры, значит, частица A должна быть взаимосвязана с другой частицей - B, которая также должна находиться с внешней стороны горизонта событий.

Правообладатель иллюстрации Thinkstock Image caption Черные дыры могут притягивать к себе материю близлежащих звезд

Если действительности соответствует ваше видение событий, и вы живы-здоровы с внутренней стороны, тогда частица A должна быть взаимосвязана с частицей C, находящейся где-то внутри черной дыры.

Прелесть этой теории заключается в том, что каждая из частиц может быть взаимосвязана только с одной другой частицей. Это значит, что частица A связана или с частицей B, или с частицей C, но не с обеими одновременно.

Итак, Анна берет свою частицу A и пропускает ее через имеющуюся у нее машинку для расшифровки запутанности, которая дает ответ - связана ли эта частица с частицей B или с частицей C.

Если ответ - C, ваша точка зрения восторжествовала в нарушение законов квантовой механики. Если частица A связана с частицей C, находящейся в недрах черной дыры, то информация, описывающая их взаимозависимость, оказывается навсегда утерянной для Анны, что противоречит квантовому закону, согласно которому информация никогда не теряется.

Если же ответ - B, то, вопреки принципам общей теории относительности, права Анна. Если частица A связана с частицей B, вас действительно испепелило излучение Хокинга. Вместо того, чтобы пролететь сквозь горизонт событий, как того требует теория относительности, вы врезались в стену огня.

Итак, мы вернулись к вопросу, с которого начинали - что произойдет с человеком, попавшим внутрь черной дыры? Пролетит ли он сквозь горизонт событий целым и невредимым благодаря реальности, которая удивительным образом зависит от наблюдателя, или врежется в огненную стену (black holes firewall , не путать с компьютерным термином firewall , "брандмауэр", программным обеспечением, защищающим ваш компьютер в сети от несанкционированного вторжения – Ред .)?

Никто не знает ответа на этот вопрос, один из самых спорных вопросов теоретической физики.

Уже свыше 100 лет ученые пытаются примирить принципы общей теории относительности и квантовой физики в надежде на то, что в конце концов та или другая возобладает. Разрешение парадокса "огненной стены" должно ответить на вопрос, какие из принципов взяли верх, и помочь физикам создать всеобъемлющую теорию.

Правообладатель иллюстрации Thinkstock Image caption А может, в следующий раз отправить в черную дыру Анну?

Решение парадокса исчезновения информации может крыться в дешифровальной машинке Анны. Определить, с какой именно другой частицей взаимосвязана частица A, чрезвычайно трудно. Физики Дэниэл Харлоу из Принстонского университета в Нью-Джерси и Патрик Хайден, который сейчас работает в калифорнийском Стэнфордском университете в Калифорнии, задались вопросом, сколько на это потребуется времени.

В 2013 г. они подсчитали, что даже при помощи наибыстрейшего компьютера, который возможно создать в соответствии с физическими законами, Анне потребовалось бы чрезвычайно много времени на то, чтобы расшифровать взаимосвязь между частицами - настолько много, что к тому моменту, как она получит ответ, черная дыра давным-давно испарится.

Если это так, вероятно, Анне просто не суждено когда-либо узнать, чья точка зрения соответствует действительности. В этом случае обе истории останутся одновременно правдивыми, реальность - зависящей от наблюдателя, и ни один из законов физики не будет нарушен.

Кроме того, связь между сверхсложными вычислениями (на которые наш наблюдатель, по всей видимости, не способен) и пространственно-временным континуумом может натолкнуть физиков на какие-то новые теоретические размышления.

Таким образом, черные дыры - не просто опасные объекты на пути межзвездных экспедиций, но и теоретические лаборатории, в которых малейшие вариации в физических законах вырастают до таких размеров, что ими уже невозможно пренебречь.

Если где-то и таится истинная природа реальности, искать ее лучше всего в черных дырах. Но пока у нас нет четкого понимания того, насколько безопасен для человека горизонт событий, наблюдать за поисками безопаснее все же снаружи. В крайнем случае можно в следующий раз отправить в черную дыру Анну - теперь ее очередь.