Моногибридное скрещивание объяснение. Моногибридное скрещивание


Биология. Общая биология. 10 класс. Базовый уровень Сивоглазов Владислав Иванович

25. Закономерности наследования. Моногибридное скрещивание

Вспомните!

Что такое ген?

Какой набор хромосом содержат половые клетки?

Закон единообразия гибридов первого поколения. Мендель начал работу с постановки эксперимента по наиболее простому, моногибридному скрещиванию, в котором родительские особи отличались друг от друга по одному изучаемому признаку. Поскольку горох – самоопыляющееся растение, в пределах одного сорта не существует изменчивости по конкретному признаку: на растениях, выросших из жёлтых семян, всегда созревают жёлтые семена, а на растениях, выросших из зелёных, – зелёные. Учитывая это свойство, Мендель скрестил растения гороха, отличающиеся по цвету семян (рис. 75). Гибридные семена первого поколения все оказались жёлтого цвета. Аналогичные результаты Мендель получил, изучая наследование остальных пар признаков. Следовательно, у гибридов первого поколения из каждой пары альтернативных признаков развивается только один. Второй признак как бы исчезает, не проявляется. Явление преобладания у гибрида признака одного из родителей Мендель назвал доминированием. Признак, проявляющийся у гибрида первого поколения и подавляющий развитие другого признака, был назван доминантным , а противоположный признак, не проявляющийся у гибридов, т. е. подавляемый, – рецессивным .

Рис. 75. Моногибридное скрещивание

В результате такого скрещивания была установлена важнейшая закономерность наследования, получившая название закона единообразия гибридов первого поколения , или закона доминирования (первый закон Менделя): при скрещивании двух гомозиготных организмов, обладающих альтернативными признаками, все гибриды первого поколения будут иметь признак одного из родителей, т. е. они будут единообразны по фенотипу . Впоследствии при изучении наследования разнообразных признаков у животных, растений, грибов было установлено, что явление доминирования широко распространено и является общей закономерностью для наследования многих признаков у большинства организмов.

Закон расщепления. Из гибридных семян гороха Мендель вырастил растения, которые в результате самоопыления произвели семена второго поколения (см. рис. 75). Среди них оказались не только жёлтые, но и зелёные семена, т. е. произошло расщепление потомства на две группы, одна из которых обладала доминантным признаком, а вторая – рецессивным. Причём это расщепление не было случайным, а подчинялось строгим количественным закономерностям: 3 / 4 семян оказались жёлтыми и 1 / 4 – зелёными. Таким образом, Мендель установил, что во втором поколении гибридов появляются особи с доминантными и рецессивными признаками, причём их соотношение 3:1 . Эта закономерность была названа законом расщепления , а впоследствии вторым законом Менделя (рис. 76).

Последующие исследования позволили установить, что законы Менделя имеют всеобщий характер для диплоидных организмов, размножающихся половым путём.

Аллельные гены. Мендель не ограничился изучением второго поколения гибридов. Чтобы выяснить, как будут наследоваться признаки в третьем поколении, он вырастил гибриды второго поколения и проанализировал потомство, которое получилось в результате самоопыления. Оказалось, что все растения, выросшие из зелёных семян, производят только зелёные семена, 1 / 3 растений, развивающихся из жёлтых семян, образуют только жёлтые, а оставшиеся 2 / 3 растений, выросших из жёлтых семян, дают жёлтые и зелёные семена в соотношении 3:1.

Чтобы объяснить закономерности наследования признаков у гороха, Мендель предположил, что развитие каждого признака определяется неким наследственным фактором, который впоследствии был назван геном . Мендель ввёл буквенные обозначения, которыми мы пользуемся и в настоящее время. Доминантные признаки и гены обычно обозначают прописными латинскими буквами (A, B, C ), а рецессивные – строчными (а, b, с ). В данном опыте жёлтая окраска – доминантный признак (А ), а зелёная – рецессивный (а ). Пару генов (А и а ), которые определяют альтернативные признаки, называют аллельными генами, а каждый член пары – аллелем. Аллели (от греч. allelon – взаимно) – это различные состояния гена, определяющие различные формы одного и того же признака . В данном примере ген, отвечающий за цвет семени, может находиться в двух аллельных вариантах: жёлтая окраска (А ) или зелёная окраска (а ).

Рис. 76. Моногибридное скрещивание. Результаты работы Г. Менделя

В результате анализа третьего поколения Мендель обнаружил, что организмы, одинаковые по внешнему виду, могут различаться по наследственным задаткам. Организмы, не дающие расщепления в следующем поколении, были названы гомозиготными (от греч. gomo – равный, zygota – оплодотворённая яйцеклетка), а организмы, в потомстве которых обнаруживается расщепление, назвали гетерозиготными (от греч. getero – разный). Гомозиготные организмы имеют одинаковые аллели одного гена – оба доминантных (АА ) или оба рецессивных (аа ).

Следует отметить, что, разбирая сейчас результаты скрещиваний, полученные Менделем, мы находимся в гораздо более выигрышном положении, чем был сам учёный в середине XIX в. В то время никто не знал о мейозе, локализации наследственной информации в хромосомах, гаплоидности и диплоидности организмов. Тем большую ценность имеют выводы, сделанные Менделем.

Закон чистоты гамет. Мендель предположил, что каждая клетка организма содержит по два наследственных фактора, причём при образовании гибридов эти факторы не смешиваются, а сохраняются в неизменном виде. Исчезновение одного из родительских признаков в первом поколении гибридов и появление его вновь во втором поколении подтверждало предположение Менделя, что наследственные факторы – это некие дискретные единицы, которые не «растворяются» и не «смешиваются», а сохраняются в неизменном виде из поколения в поколение.

При половом размножении связь между поколениями осуществляется через половые клетки – гаметы. Поэтому Мендель логично предположил, что каждая гамета должна содержать только один фактор из пары, чтобы при их слиянии восстанавливался двойной набор. Если при оплодотворении встретятся две гаметы, несущие рецессивный фактор, сформируется организм с рецессивным признаком (аа ), а если хотя бы одна из двух гамет будет содержать доминантный фактор, образуется особь с доминантным признаком (АА, Аа ). Основываясь на результатах своих экспериментов, Мендель сделал вывод, что наследственные факторы (т. е. в современном понимании – гены) в гибриде не смешиваются, не сливаются и передаются гаметам в «чистом» виде. В этом и состоит смысл закона чистоты гамет , который в настоящее время можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один аллель из каждой пары .

Для того чтобы понять, почему и как это происходит, надо вспомнить основные явления, происходящие в мейозе. В каждой клетке тела содержится диплоидный (2n ) набор хромосом. В результате двух делений мейоза образуются клетки, несущие гаплоидный набор хромосом (1n ), т. е. содержащие по одной хромосоме из каждой пары гомологичных хромосом. В дальнейшем слияние гаплоидных гамет вновь приводит к образованию диплоидного организма. В свете современных знаний представления Менделя о парности наследственных факторов, чистоте гамет и закономерностях расщепления легко объясняются присутствием у диплоидных организмов гомологичных хромосом, их расхождением в мейозе и восстановлением двойного набора при оплодотворении.

Цитологические основы моногибридного скрещивания. Давайте схематично представим результаты скрещиваний, осуществлённые Менделем, используя современные знания (рис. 77).

Рис. 77. Цитологические основы моногибридного скрещивания

Р (от лат. рarenta – родители) обозначает родительское поколение, F 1 (от лат. filii – дети) – гибриды первого поколения, F 2 – гибриды второго поколения, символ

– женскую особь, символ

– мужскую, знак ? – скрещивание, А – доминантный ген, отвечающий за формирование жёлтой окраски семян, а – рецессивный ген, отвечающий за зелёную окраску.

Исходные родительские растения в рассматриваемом опыте были гомозиготными, т. е. содержали в обеих гомологичных хромосомах одинаковые аллели гена. Следовательно, первое скрещивание можно записать так: Р (

Q АА ? аа ). Оба родительских растения могли образовывать гаметы только одного типа: женское растение – гаметы, содержащие ген А, мужское – а. Поэтому при их слиянии все особи первого поколения имели одинаковый гетерозиготный генотип (Аа ) и одинаковое проявление признака (жёлтые семена).

Гибриды первого поколения образовывали в равном соотношении гаметы двух типов, несущие гены А и а. При самоопылении в результате случайной встречи гамет в F 2 возникали следующие зиготы: АА, Аа, аА, аа, что можно записать так: АА + 2Аа + аа. Гетерозиготные семена окрашены в жёлтый цвет, поэтому по фенотипу расщепление во втором поколении соответствует 3:1. Понятно, что та 1 / 3 растений, которые выросли из жёлтых семян, имеющих гены АА , при самоопылении сформируют только жёлтые семена. Остальные 2 / 3 растений (Аа ) в следующем поколении вновь образуют расщепление признаков.

Вопросы для повторения и задания

1. Какое скрещивание называют моногибридным?

2. Что такое доминирование? Какой признак называют рецессивным?

3. Охарактеризуйте понятия «гомозиготный» и «гетерозиготный» организм.

4. Сформулируйте закон расщепления. Почему он так называется?

5. Что такое чистота гамет? На каком явлении основан закон чистоты гамет?

6. У человека длинные ресницы – доминантный признак. Женщина с длинными ресницами, у отца которой были короткие ресницы, вышла замуж за мужчину с короткими ресницами. Какова вероятность рождения у них ребёнка с длинными ресницами? Какие генотипы могут быть у детей этой супружеской пары?

7. У кареглазых родителей родился голубоглазый ребёнок. Молодые родители, плохо изучавшие биологию в школе, пребывают в шоке. Объясните им ситуацию, учитывая, что карий цвет глаз – доминантный признак, а голубой – рецессивный.

Подумайте! Выполните!

1. Составьте и решите задачу на моногибридное скрещивание.

2. Применимы ли законы Менделя к наследованию признаков у бактерий? Докажите свою точку зрения.

3. Сформулируйте определения гетерозиготного и гомозиготного организмов, используя в качестве критерия сравнения число типов гамет, которые они способны формировать.

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Из книги Искусственное осеменение собак автора Иванов В В

ПРОТОКОЛ ГИНЕКОЛОГИЧЕСКОГО НАСЛЕДОВАНИЯ СУКИ от ____________________200_ г.Выдан ____________________проживающему ____________________в том, что принадлежащая ему сука ____________________породы ____________________, возраст____________________прошла ветеринарную гинекологическую оценку. Ф.И.О. подпись врача ____________________

Из книги Основы зоопсихологии автора Фабри Курт Эрнестович

Материальная культура и биологические закономерности Знаменательно, что наряду с мощным прогрессом в развитии материальной культуры, а соответственно и психической деятельности, с начала эпохи позднего палеолита резко затормозилось биологическое развитие человека:

Из книги Племенное дело в служебном собаководстве автора Мазовер Александр Павлович

МЕЖПОРОДНОЕ СКРЕЩИВАНИЕ Скрещиванием называют спаривание животных разных пород для получения высококачественных пользовательных, животных, быстрого изменения свойств породы и выведения новых пород.Животные, получаемые от спаривания разных пород или происходящие от

Из книги Эволюционно-генетические аспекты поведения: избранные труды автора Крушинский Леонид Викторович

О взаимоотношении наследования активно- и пассивно-оборонительных реакций По форме проявления пассивно - и активно-оборонительные реакции существенно различаются. Первая выражается в убегании животного, вторая - в нападении на пришельца. Соединение этих двух реакций

Из книги Расы и народы [Ген, мутация и эволюция человека] автора Азимов Айзек

Глава 6. Законы наследования Мендель и его горохК сожалению, наследование цвета глаз в действительности не столь уж элементарно, как это было описано в предыдущей главе. Если бы оно было таким простым, люди, возможно, заметили бы способ, с помощью которого цвет глаз

Из книги Возрастная анатомия и физиология автора Антонова Ольга Александровна

1.1. Основные закономерности роста и развития

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Из книги Эволюция [Классические идеи в свете новых открытий] автора Марков Александр Владимирович

Глава 6 Новые виды, или Как предотвратить скрещивание

Из книги Мир животных. Том 6 [Рассказы о домашних животных] автора Акимушкин Игорь Иванович

Закономерности и «сюрпризы» доместикации Домашние животные отличаются от диких прародителей рядом особенностей. Из внешних проявлений можно назвать, например, окраску. У диких она, как правило, единообразна для всех представителей вида, отклонения от природной нормы

Из книги Биология. Общая биология. 10 класс. Базовый уровень автора Сивоглазов Владислав Иванович

26. Закономерности наследования. Дигибридное скрещивание Вспомните!Какое скрещивание называют моногибридным?Что такое гомозиготный организм; гетерозиготный организм?Что расходится к разным полюсам в анафазе первого мейотического деления?Закон независимого

Из книги Секреты наследственности человека автора Афонькин Сергей Юрьевич

Доминантный тип наследования Если мутантный ген является доминантным, наличие такого гена обязательно будет проявляться у человека, который является его носителем. Чаще всего такие люди бывают гетерозиготами по данному гену, то есть один аллельный ген у них является

Из книги Генетика человека с основами общей генетики [Руководство для самоподготовки] автора

Рецессивный тип наследования Болезни с рецессивным типом наследования проявляются только у людей - рецессивных гомозигот по данным генам. Это означает, что в случае, когда клетки человека обладают только одним мутантным аллельным геном, а второй ген работает нормально,

Из книги Генетика человека с основами общей генетики [Учебное пособие] автора Курчанов Николай Анатольевич

Тема 4. Закономерности наследственности Не беда появиться на свет в утином гнезде, если ты вылупился из лебединого яйца. Г. Х. Андерсен (1805–1875), датский писатель Общебиологическое значение генетики вытекает из того, что законы наследственности справедливы для всех

Из книги Антропология и концепции биологии автора Курчанов Николай Анатольевич САДЫКОВ БОРИС ФАГИМОВИЧ, к.б.н., доцент. Подготовка по Скайпу к сдаче ЕГЭ в 2020 году. [email protected]; +7 (927) 32-32-052

Posted on 16.11.2011 by Борис Садыков

Хочу вас обрадовать. Я написал по тем основным положениям генетики, освоив которые, вы без труда научитесь понимать решение генетических задач любой сложности.

В данной статье помещены лишь самые простые генетические задачи по моногибридному скрещиванию. Хотя для большинства из вас решение их не вызовет затруднений, но они нужны нам в основном в методическом плане.

Проследив логику рассуждений на простых примерах, вы сможете применить ее и к более сложным заданиям. Моногибридное скрещивание — основа основ понимания вами всей генетики в дальнейшем. Чтобы ваши знания были более полными в целом, «фундамент» должен быть прочным.

Различных руководств по решению генетических задач очень и очень много. Но большинство из них это простые задачники: есть условие задачи, есть ответ.

Могут быть и пособия с краткими пояснениями. Но эти пояснения оказываются полезными лишь тем, кто и так уже довольно хорошо понимает как надо решать.

Я же, как репетитор по биологии, постараюсь на примере многих возможных типов заданий по генетике, преподнести разъяснение решений различных задач наиболее подробно. В общем моя функция: разъяснить как решать задачи по генетике тем, кому кажется, что это что-то очень трудное, но они непременно хотели бы научиться решать самостоятельно.

В моей платной книге « « , подробно разбираются задачи:

* по Менделевским типам скрещивания (моногибридному и дигибридному);

* по Моргану на сцепленное наследование (с кроссинговером и без кроссинговера);

* по наследованию, сцепленному с полом

* и по анализу родословных.

Примеры, приводимых мною заданий по моногибридному скрещиванию очень различаются по сложности. Советую сначала, прочитав условие задачи, решать ее самостоятельно и лишь в случае затруднения с решением читать мои пояснения (порой они слишком развернутые и тем, кто разбирается, конечно, покажутся через чур подробными).

Кареглазый мужчина женился на голубоглазой женщине. У них родился голубоглазый ребенок. Определите генотипы родителей и вероятность рождения ребенка с карими глазами.

Задача 2. Вы знаете, что полидактилия (шестипалость) — доминантный признак

Полидактилия у человека является доминантным признаком, а нормальное строение кистей рук – признак рецессивный. От брака гетерозиготного шестипалого мужчины с женщиной, имеющей нормальное строение кистей рук, родились два ребенка: пятипалый и шестипалый. Каков генотип этих детей?

Задача 3. На неполное доминирование

У человека курчавые волосы – доминантный признак, а прямые (гладкие) рецессивный признак. У гетерозигот волосы волнистые. Какой тип волос у детей может быть, и с какой вероятностью, если оба родителя имеют волнистые волосы?

Задача 4. Объясняющая, что такое анализирующее скрещивание

У человека доминантный ген вызывает аномалию развития скелета, выражающуюся в изменении костей черепа и редукции ключиц. Женщина с нормальным строением скелета вышла замуж за мужчину, страдающего данной аномалией. Ребенок от этого брака имел нормальное строение скелета. Можно ли по фенотипу ребенка определить генотип его отца? Ответ обоснуйте.

Задача 5. Микросомия гемифациальная

Микросомия гемифациальная сопровождается односторонней аномалией ушной раковины с недоразвитием нижней челюсти на той же стороне. Определяется аутосомным доминантным геном. Какое потомство можно ожидать от брака супругов гетерозиготных по данной патологии.

Задача 6. Когда может родиться кто угодно

Голубоглазый мужчина женат на кареглазой женщине, родители которой были также кареглазыми, но сестра – голубоглазая. Может ли у них родиться голубоглазый ребенок? Какой закон действует в данной ситуации? Назовите и сформулируйте его.

Решения этих задач подробно разбираются в моей платной книге « «.

Примеры решений некоторых типичных задач на моногибридное скрещивание

Задача1. Из семян плодов томатов красного цвета фермер получил растения с плодами красного цвета и растения с плодами желтого цвета. Красный цвет определяется доминантным геном.

а) назовите цвет плодов томатов, составляющих три четверти полученного урожая

б) выберите правильный вариант ответа. П олученный результат является доказательством: 1) закона единообразия; 2) закона расщепления признаков

в) сформулируйте Менделевский закон, выбранный в предыдущем задании

а) Так как от растений с красными плодами получились растения и с красными, и с желтыми плодами, значит красный цвет определяется доминантным аллелем А , а желтый — рецессивным а -малое. Очевидно и то, что получить от растений с красными плодами растения и с красными, и с желтыми плодами, возможно, если генотип растений томата с красными плодами был гетерозиготным: Аа х Аа (получим по фенотипу 3А- к 1аа или на 3 части красных томатов 1 часть желтых).

б) это 2) закон расщепления признака (ни в коем случае «не признаков», а именно признака, так как речь идет о моногибридном скрещивании, когда рассматривается характер наследования всего одного признака - в данном случае это цвет плодов томатов, который может быть красным или желтым)

в) Уже более 100 лет этот второй закон Менделя: «закон расщепления признака в потомстве второго поколения в соотношении 3:1 по фенотипу и 1:2:1 по генотипу» .

Вот в третьем законе Менделя, «закон независимого наследования признаков », установленном им при дигибридном скрещивании, действительно речь идет о характере наследования двух разных признаков.

Задача 2. У пшеницы красная окраска колоса доминантная по отношению к белой. Гетерозиготное красноколосое растение скрещено с белоколосым. В F2 получено 28 растений.

1.Сколько типов гамет может образовать красноколосое растение?

2.Сколько типов гамет может образовать белоколосое растение?

3.Сколько растений F2 будут гетерозиготными?

4.Сколько растений F2 могут быть красноколосыми?

5.Сколько разных генотипов может быть в F2

6.Продемонстрируйте проявление законов Менделя на результатах задачи.

Обозначим А - аллельный ген, ответственный за проявление красной окраски колоса пшеницы; а — аллельный ген, ответственный за проявление белой окраски колоса пшеницы. Тогда генотип красноколосого растения будет АА или Аа ; генотип белоколосого только аа .

1. 2 гаметы «А » и «а »; 2. Одну гамету «а »; 3. Из 28 растений гетерозигот с генотипом Аа будет половина, 14 штук; 4. Все гетерозиготы и есть красноколосые, их 14 штук; 5. 2 генотипа Аа и аа ;

6. P: Aa x aa

G: … A,a … a

Гетерозигота Аа будет по фенотипу красноколосым растением (Это 1 закон Менделя, закон единообразия гибридов первого поколения. Или закон доминирования одного аллельного гена над другим).

Продемонстрировать на условии этой задачи второй закон Менделя (а тем более третий для дигибридного скрещивания) не удастся. Для демонстрации второго закона, закона расщепления признака в потомстве в отношении 1:2:1 по генотипу и 3:1 по фенотипу, надо скрещивать две гетерозиготные особи друг с другом (или провести самоопыление), то есть скрестить Аа х Аа.

Задача 3. У голубоглазого мужчины родители имеют карие глаза, он женился на кареглазой женщине, у которой отец имел карие глаза, а мать голубые. От этого брака родился голубоглазый ребёнок. Определить генотипы всех упомянутых лиц со стороны родителей.

Обозначим: А — доминантный аллель, ответственный за проявление карих глаза; а — рецессивный аллель, ответственный за проявление голубые глаз.

У мужчины голубые глаза, значит его генотип — aa . Поэтому оба его родителя обладали рецессивным аллелем а — малое. Поскольку у них у обоих карие глаза, то их генотип был гетерозиготным Аа.

У женщины карие глаза, значит в ее генотипе присутствует аллель A . Аллель a — малое также присутствует, так как у неё родился голубоглазый сын — aa (а значит один из рецессивных аллельных генов унаследован от неё). Генотип матери этой женщины — aa , генотип отца этой женщины мог быть как АА. так и Аа .

Итак, генотипы всей семьи запишутся так:
aa — мать женщины
A- — отец женщины
Aa — мать мужчины
Aa — отец мужчины
Aa — женщина
aa — мужчина
aa — их сын

Задача 4. У человека ген длинных ресниц доминирует над геном коротких ресниц. Женщина с длинными ресницами, у отца которой ресницы были короткими вышла замуж за мужчину с короткими ресницами. Какова вероятность рождения ребенка с длинными ресницами?

Обозначим: А - аллельный ген, ответственный за проявление признака длинных ресниц; а - короткие ресницы.

Определим генотип женщины. Очевидно, что она была гетерозиготой Аа , так как от отца ей достался аллельный ген а — малое, но сама то она была фенотипически с длинными ресницами.

Генотип мужчины мог быть только - аа .

Значит вероятность рождения ребенка с длинными ресницами в этом браке составляет 50%.

Задача 5. При разборе судебного дела по установлению отцовства суду была предоставлена справка о том, что мать имеет вторую группу крови, ребенок четвертую, а предполагаемый отец — третью. К какому выводу должен придти суд?

В. Решение генетических задач | аллельные гены анализирующее скрещивание гетерозигота гомозигота доминантные гены микросомия гемифациальная моногибридное скрещивание наследование признаков неполное доминирование полидактилия репетитор биологии по Скайпу репетитор по биологии рецессивные гены решение генетических задач чистые линии шестипалость |

Моногибридное скрещивание - скрещивание форм, отличающихся друг от друга по одной паре изучаемых альтернативных признаков, за которые отвечают аллели одного гена.

Рисунок 1: Шаблон, показывающий наследование доминантных (красного ) и рецессивного (белый) фенотипов, когда каждый родитель (1) гомозиготен для доминантного либо рецессивного признака. Все члены I поколения гетерозиготны и имеют один и тот же общий для всех фенотип (2), в то время как поколение II показывает соотношение 3:1 доминантного к рецессивному фенотипам (3).

Моногенное наследование, изучаемое при моногибридном скрещивании - это наследование признака, за проявления которого отвечает один ген, различные формы которого называют аллелями . Например, при моногибридном скрещивании между двумя чистыми линиями растений , гомозиготных по соответствующим признакам - одного с жёлтыми семенами (доминантный признак), а другого с зелёными семенами (рецессивный признак), можно ожидать, что первое поколение будет только с жёлтыми семенами, потому что аллель жёлтых семян доминирует над аллелью зелёных.

Примеры

Примерами моногибридного скрещивания могут служить опыты, проведённые Грегором Менделем : скрещивания растений гороха , отличающихся друг от друга одной парой альтернативных признаков: жёлтая и зелёная окраска, гладкая и морщинистая поверхность семян, красная и белая окраска цветков и др.

Результаты

Результат моногибридного скрещивания в первом поколении - единообразие полученных гибридов (все потомки будут гетерозиготными). Результатом моногибридного скрещивания гетерозиготных потомков первого поколения будет 75 % вероятность проявления доминантного фенотипа и 25%-ая вероятность проявления рецессивного фенотипа во втором поколении гибридов (закон расщепления 3:1). Такой результат будет наблюдаться только при полном доминировании (фенотип гетерозигот Аа совпадает с фенотипом гомозигот АА). По генотипу во втором поколении гибридов наблюдается расщепление 1:2:1 (около 50% особей имеют генотип Аа и по 25% - генотипы АА и аа). При неполном доминировании (когда особи с генотипом Аа имеют фенотип, промежуточный между фенотипами гомозигот) расщепление по фенотипу во втором поколении гибридов будет совпадать с расщеплением по генотипу. Так, при скрещивании чистых линий растения ночной красавицы

Моногибридным скрещиванием называют такое, при котором родительские формы различаются лишь по одной паре альтернативных или контрастирующих признаков.

Например, отцовское растение несет пурпурные цветки, а материнское - белые, или наоборот.

Перед тем как производить скрещивание, необходимо убедиться в том, что избранные признаки родительских форм являются контрастирующих в ряду поколений, т. е. при самоопылении или близко — родственном скрещивании каждый из избранных признаков стойко наследуется. Родственные организмы, воспроизводящие в ряду поколений одни и те же наследственно константные признаки, принято называть линией.

У растений с гермафродитными цветками при искусственной гибридизации до опыления производят кастрацию цветков материнского растения, удаляя пыльники до того, как они созрели. Однополые женские цветки перекрестноопылителей заблаговременно помещают в изоляторы. В момент созревания рылец на них наносят пыльцу, собранную с цветков отцовского растения.

Когда скрещиваются растения, например, гороха, то семена, созревшие в бобе на материнском растении в год скрещивания, являются уже гибридами первого поколения (F 1). Из этих посеянных семян вырастут гибридные растения первого поколения, а в бобах этих растений в результате самоопыления разовьются семена с зародышами второго поколения (F 2). Если материнское растение имело цветки, например, пурпурные, а отцовское - белые, то цветки гибридных растений F 1 оказываются все пурпурными, растения с белой окраской цветков среди них не появляются.

От скрещивания растений, различающихся по окраске семян (желтые и зеленые), на материнском растении гибридные семена в год скрещивания оказываются только желтыми. Если исходные растения отличались по форме семян (гладкие - морщинистые), то гибридные семена F 1 на материнском растении оказываются только гладкими.

Следовательно, у гибрида первого поколения из каждой пары альтернативных признаков развивается только один. Второй признак как бы исчезает, не проявляется. Это явление преобладания гибрида признака одного из родителей Г. Мендель назвал доминированием . Признак, проявляющийся у гибрида первого поколения и подавляющий развитие другого признака, был назван доминантным ; противоположный, т. е. подавляемый, признак - рецессивным . Мендель так определяет доминантные и рецессивные признаки: «Признаки, которые переходят в гибридные соединения совершенно неизменными или почти неизмененными и тем самым представляют признаки гибридов, будут обозначаться как доминирующие, а те, которые становятся при гибридизации латентными, - как рецессивные».

Закон доминирования - первый закон Менделя - называют также законом единообразия гибридов первого поколения, так как все особи первого поколения имеют одинаковое проявление признака.

Если гибриду первого поколения, полученному, например, от скрещивания двух форм гороха, различающихся по окраске цветка, представляется возможность самоопыляться, то в следующем поколении, т. е. в F 2 появляются растения с признаками обоих родителей. Это явление носит название расщепления. В F 2 наблюдается расщепление в совершенно определенном количественном соотношении, а именно: в среднем 3/4 от общего числа растений несут пурпурные цветки и лишь 1/4 - белые, т. е. отношение числа растений с доминантным признаком к числу растений с рецессивным признаком оказывается равным 3: 1. Следовательно, рецессивный признак у гибрида первого поколения не исчез, а был только подавлен и проявился во втором гибридном поколении.

Каждое растение из F 2 с белыми цветками при самоопылении в следующих поколениях - F 3 и F 4 и т. д. дает растения только с белыми цветками. Растения с пурпурными цветками ведут себя иначе. Лишь 1/3 из них при самоопылении дает в F 3 и следующих поколениях растения только с пурпурными цветками, а остальные 2/3 вновь дают растения обоих типов в отношении: 3 растения с пурпурными цветками и 1 - с белыми.

Следовательно, класс растений F 3 с доминантным признаком распадается по своим наследственным задаткам в отношении 1: 2, а все растения второго поколения дают отношение при расщеплении по одной паре наследственных задатков 1: 2: 1. Понятие класса здесь и в последующем употребляется в смысле группы потомков, сходных по изучаемому признаку или наследственным задаткам.

Все изложенное в отношении наследования окраски цветка приложимо и к наследованию любой другой пары альтернативных признаков, правда, при определенных условиях, о чем будет сказано ниже.

Так, при изучении наследования гладкой или морщинистой формы семян от 253 гибридных самоопыляющихся растений F 1 Менделем было получено в F 2 7324 семени, из них гладких - 5474, морщинистых - 1850. Если отношение 3: 1 является правильным, то при общем числе семян 7324 теоретически следовало ожидать следующее распределение: 1 / 4 семян (т. е. 7324 Х 1 / 4 = 1831) должна обладать рецессивным признаком (морщинистые), а 3 / 4 (т. е. 7324 Х 3 / 4 = 5493) - доминантным (гладкие). В опытах Менделя были получены цифры, очень близкие к теоретическим.

В другом опыте, где учитывался признак окраски семян (желтые или зеленые), Мендель получил следующее соотношение в F 2: из 8023 семян оказалось 6022 желтых и 2001 - зеленое, т. е. опять-таки отношение, очень близкое к 3: 1.

Однако Мендель неоднократно подчеркивал, что эти отношения отражают лишь средние величины; при малом числе особей количество растений с альтернативными признаками в F 2 будет колебаться в силу случайных причин.

Данные свидетельствуют о том, что у отдельных растений имеются очевидные колебания в соотношении классов семян, но в сумме получается отношение, близкое к ожидаемому распределению 3:1. Опытные данные дали очень близкое к этому отношение - 355: 123.

Итак, проведя моногибридные скрещивания, Мендель установил следующие закономерности наследования.

1. У гибридов первого поколения проявляется только один из пары альтернативных признаков - доминантный, рецессивный же не проявляется. Это явление было названо доминированием, а позднее - первым законом Менделя, или законом единообразия гибридов первого поколения.

2. Во втором поколении гибридов появляются особи как с доминантным признаком, так и с рецессивным, отношение первых ко вторым в среднем равно 3:1. Это явление в 1900 г. Г. де Фриз предложил назвать законом расщепления, а впоследствии оно было названо вторым законом Менделя. Потомки с рецессивным признаком в последующих поколениях при самоопылении остаются константными.

3. Среди 3 / 4 растений второго поколения с доминантным признаком 2 / 4 от общего числа потомков оказываются гибридными; при самоопылении они дают в F 3 расщепление вновь в отношении 3:1, и только 2/4 остается константной в последующих поколениях, подобно исходным родительским формам и растениям из F 2 с рецессивным признаком. Следовательно, в F 2 половина растений является гибридными, а половина - «чистыми», константно сохраняющими родительские признаки. Таким образом, потомки гибридов F 1 по данным наследственным признакам расщепляются в отношении 1: 2: 1. Мендель формулировал это следующим образом: «Гибриды по двум различающимся признакам образуют семена, из которых половина дает вновь гибридную форму, тогда как другая дает растения, которые остаются константными, в равных долях содержат доминирующий и рецессивный признаки».

Как мы видели, в F 2 следует различать, во-первых, расщепление по внешнему проявлению признаков, которое выражается отношением, 3: 1, и, во-вторых, по наследственным потенциям, задаткам, выражаемое отношением 1:2:1. Первый тип расщепления называют расщеплением по фенотипу, т. е. по внешнему проявлению признаков, второй тип - по генотипу, т. е. по наследственным задаткам. Термины «фенотип» и «генотип» введены в 1903 г. В. Иоганнсеном.

Под генотипом мы понимаем совокупность наследственных задатков, которыми обладает организм. Фенотипом называют совокупность свойств и признаков организма, которые являются результатом взаимодействия генотипа особи и окружающей среды.

Мендель впервые применил символическое обозначение генотипа, где наследственные факторы, определяющие парные альтернативные признаки, обозначались буквами латинского алфавита. Такую пару альтернативных признаков В. Бэтсон в 1902 г. предложил назвать аллеломорфной парой, а парность признаков - аллеломорфизмом. Б 1926 г. В. Иоганнсен предложил термин «аллеломорфизм » заменить более кратким - «аллелизм», а отдельный фактор одной пары назвать «аллелью». Под терминами «доминантная» или «рецессивная аллель» стали понимать альтернативное состояние одного и того же гена. Этот же смысл был придан и прежним прочно закрепившимся в генетике обозначениям - «доминантный ген» и «рецессивный ген».

Доминантную аллель, определяющую признак желтой окраски семян, Мендель обозначил заглавной буквой А, рецессивную аллель, определяющую признак зеленой окраски, - строчной буквой а; генотип доминантной формы - АА, а рецессивной - аа; гибрид F 1 - Аа. В таком случае потомки гибридов показывают расщепление в F 2 , соответствующее формуле: 1АА: 2Аа: 1аа.

Эта символика факторов парных признаков, используемая для отображения закономерностей расщепления в потомстве гибридов, является своеобразной «алгеброй» генетики, поскольку вместо буквенных выражений могут быть подставлены соответствующие им различные гены и аллели.

Константные формы АА и аа, которые в последующих поколениях не дают расщепления, В. Бэтсон в 1902 г. предложил назвать гомозиготными, а формы Аа, дающие расщепление, - гетерозиготными. Эти термины широко используются в генетике. Они происходят от термина «зигота», т. е. оплодотворенная яйцеклетка.

Соединение в процессе оплодотворения одинаковых по факторам мужских и женских гамет А и А или а и а дает гомозиготу, или гомозиготную особь АА или аа, а соединение гамет, различающихся по факторам А и а, - гетерозиготу, или гетерозиготную особь Аа.

Как мы видели, у гибридов первого поколения рецессивная аллель а хотя и не проявляется, но и не смешивается с доминантной А, а во втором поколении обе аллели вновь проявляются в «чистом» виде. Такое явление можно объяснить, лишь исходя из допущения, что гибрид первого поколения Аа образует не гибридные, а чистые гаметы, при этом указанные аллели оказываются в разных гаметах. Гаметы, несущие аллели А и а, образуются в равном числе; исходя из этого становится понятным расщепление по генотипу 1:2:1.

Несмешивание аллелей каждой пары альтернативных признаков в гаметах гибридного организма называют явлением чистоты гамет, в основе второго лежит цитологический механизм мейоза.

Мендель обнаружил интересное явление изменения соотношения гомозигот и гетерозигот в ряду последовательных поколений гибрида при самоопылении. Если допустить, что в среднем все растения в ряду поколений имеют одинаковую плодовитость и жизнеспособность и принять во внимание факт расщепления гибридов во втором поколении в определенном числовом отношении (а именно 2 гомозиготных и 2 гетерозиготных растения по данному признаку), то в последующих поколениях при самоопылении всех растений число гомозигот будет увеличиваться, а гетерозигот - уменьшаться.

Для простоты Мендель предположил, что каждое растение при самоопылении дает в каждом поколении четыре семени. В таком случае соотношение гомозигот и гетерозигот по одной паре признаков будет изменяться в ряду поколений. В десятом поколении, по расчету Менделя, на каждые 2048 растений, которые должны возникнуть при взятом коэффициенте размножения, 1023 будут константными - гомозиготными по доминантному признаку, 1023 - гомозиготными по рецессивному признаку и появятся только 2 гибридные, т. е. гетерозиготные формы. Эти расчеты Менделя, как мы убедимся в последующем, имеют значение для понимания генетических основ селекции и динамики генов в популяции.

До сих пор мы говорили об одной паре альтернативных признаков, один из которых является доминантным, другой - рецессивным. Мендель исследовал у гороха семь пар таких признаков:

1) семена гладкие и морщинистые, или угловатые, 2) семядоли желтые и зеленые, 3) окраска семенной кожуры серо-коричневая и белая, 4) форма боба выпуклая и с перетяжками, 5) окраска зрелого боба желтая и зеленая, 6) расположение цветков пазушное и верхушечное, 7) стебель растения высокий и низкий. По каждой из этих семи пар признаков в отдельности в F 2 наблюдалось расщепление по фенотипу в среднем в отношении 3:1. Выражая это в процентах, можно сказать, что в F 2 было около 75% растений с доминантным и около 25% с рецессивным признаками, или доминантных гомозигот - 25%, гетерозигот - 50% и рецессивных гомозигот - 25%.

Истинная природа парности признаков Менделю осталась неизвестной. Он предполагал, что половые клетки несут по одному наследственному задатку, которые попарно соединяются при оплодотворении. Теперь эти задатки, или факторы, переносимые половыми клетками, называют генами. Под термином «ген» пока мы будем понимать единицу наследственности, определяющую развитие отдельного признака, или свойства, организма. По мере углубления анализа явлений наследственности и механизма наследования наши представления о природе гена будут расширяться. Гены, как мы указали, определяют развитие признаков организма и должны быть связаны с материальными структурами половых клеток. Очевидно, во времена Менделя на этот счет можно было высказывать лишь догадки, поскольку строение и развитие половых клеток не было еще изучено.

Чем же определяется парность генов, чистота гамет и строгое распределение генов в потомстве, обусловливающее расщепление в определенном числовом отношении? После того как мы познакомились в предыдущих главах с развитием половых клеток и формированием гамет, нам несложно связать наблюдавшееся Менделем явление расщепления признаков с поведением хромосом: их парностью, расхождением гомологичных хромосом в мейозе и воссоединением их в процессе оплодотворения.

Допустим, что в соматических клетках растения имеется всего одна пара гомологичных хромосом, а ген, определяющий признак пурпурной окраски цветка, обозначаемый А, находится в каждой из этих хромосом у родительского растения. Тогда соматические клетки гомозиготного растения, обладающие доминантным геном окраски цветка, должны нести две доминантные аллели АА, поскольку в соматических клетках каждая из гомологичных хромосом представлена в двойном количестве. Соответственно клетки другого родительского растения с белыми цветками имеют в гомозиготе рецессивную аллель белой окраски, т. е. аа.

В результате мейоза в каждой гамете число хромосом уменьшается в два раза и остается только одна хромосома из пары. Следовательно, ген, находящийся в этой хромосоме, в гамете представлен в виде аллелей А или а. В результате оплодотворения в гибридной зиготе восстанавливается парность хромосом, и формула гибрида будет точно такой, как ее написал Мендель - Аа. При развитии половых клеток в гибридном организме в мейозе хромосомы данной пары разойдутся в разные дочерние клетки. Тогда мужские и женские гаметы будут нести по одной из аллелей гена: А или а. Такие гаметы, как мужские, так и женские, будут образовываться в равном числе. При оплодотворении типов могут соединяться с равной вероятностью образуется четыре типа зигот.

Для облегчения расчета сочетаний разных типов гамет английский генетик Р. Пеннет предложил производить запись в виде решетки, которая и вошла в литературу как решетка Пеннета. Влево от решетки по вертикали указываются женские гаметы, по горизонтали - мужские. В квадраты решетки вписываются образующиеся сочетания гамет. Эти сочетания соответствуют генотипам зигот. Решетка Пеннета особенно удобна при анализе наследования признаков сложных гибридов.

Рассмотрение приведенной схемы показывает, что расщепление по фенотипу 3: 1 и генотипу 1:2:1 может быть осуществлено лишь при определенных условиях. Во-первых, должно происходить равновероятное образование в мейозе обоих типов гамет т. е. гамет, несущих аллель А, и гамет с аллелью а. Во-вторых, должна иметь место равновероятная встреча и сочетание этих гамет при оплодотворении. Оба эти условия, как мы знаем из предыдущей главы, обеспечиваются с большей точностью при большем числе наблюдений. В первом делении мейоза осуществляется редукция числа хромосом с расхождением гомологичных партнеров к полюсам, причем вероятность отхождения хромосом к тому или другому полюсу одинакова, как и вероятность созревания и развития гамет всех сортов. При большом числе гамет обеспечивается также и равновероятная встреча их при оплодотворении. К этим условиям необходимо добавить и еще одно - равную выживаемость всех типов зигот и развивающихся из них особей.

Анализируя моногибридное скрещивание, мы не обращали внимания на то, какое из растений было материнским и какое - отцовским. Влияет ли на свойства гибрида и на характер расщепления в его потомстве то, что материнское растение будет нести доминантный признак, а мужское - рецессивный, и наоборот? Еще до Менделя гибридизаторы заметили, что направление скрещивания обычно не влияет на признаки гибрида. Это давало основание предполагать равное участие женского и мужского полов в передаче наследственных факторов. Мендель подтвердил эти наблюдения. Доминантный признак проявляется у гибрида независимо от того, привносит ли этот признак материнское или отцовское растение. Для признаков гороха, наследование которых изучал Мендель, указанное положение было правильным.

Но надо сказать, что иногда имеются различия в передаче наследственных свойств со стороны материнского или отцовского организма, с этим явлением мы познакомимся позднее. Поэтому направление скрещивания все же принято указывать. Скрещивания двух форм между собой в двух разных направлениях называют реципрокными. Так, при скрещивании двух форм Р 1 и Р 2 в одном направлении Р 1 выступает как материнская форма, Р 2 - как отцовская (P 1 XP 2), а во втором - Р 2 как материнская, Р 1 - отцовская (P 2 XP 1).

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .