Теория струн простым языком. Теория струн и скрытые измерения вселенной - доказательства существования


Теория относительности представляет Вселенную «плоской», но квантовая механика утверждает, что на микроуровне происходит бесконечное движение, искривляющее пространство. Теория струн объединяет эти идеи и представляет микрочастицы как следствие объединения тончайших одномерных струн, которые будут иметь вид точечных микрочастиц, следовательно, не могут наблюдаться экспериментально.

Данная гипотеза позволяет представить элементарные частицы, составляющие атом из ультрамикроскопических волокон, называемых струнами.

Все свойства элементарных частиц объясняются резонансным колебанием волокон, их образующих. Эти волокна могут совершать бесконечное множество вариантов вибраций. Данная теория предполагает объединение идей квантовой механики и теории относительности. Но из-за наличия множества проблем в подтверждении мыслей заложенных в ее основе большая часть современных ученых считают, что предложенные идеи не более чем самая обыкновенная профанация или другими словами — теория струн для чайников, то есть для людей, которые совершенно не разбираются в науке и строении окружающего мира.

Свойства ультрамикроскопических волокон

Чтобы понять их суть, можно представить струны музыкальных инструментов – они могут вибрировать, изгибаться, сворачиваться. Тоже происходит и с этими нитями, которые издавая определенные вибрации, взаимодействуют друг с другом, сворачиваются в петли и образуют более крупные частицы (электроны, кварки), масса которых зависит от частоты вибрации волокон и их натянутости – эти показатели определяют энергию струн. Чем больше излучаемая энергия, тем выше масса элементарной частицы.

Инфляционная теория и струны

Согласно инфляционной гипотезе, Вселенная была создана благодаря расширению микро пространства, размером в струну (длина Планка). По мере увеличения этой области растягивались и так называемые ультрамикроскопические волокна, теперь их длина соизмерима с размерами Вселенной. Они точно так же взаимодействуют между собой и производят те же вибрации и колебания. Выглядит это как производимый ими эффект гравитационных линз, искажающих лучи света дальних галактик. А продольные колебания порождают гравитационное излучение.

Математическая несостоятельность и другие проблемы

Одной из проблем считается математическая несостоятельность теории — физикам, изучающим ее, не хватает формул для приведения ее в завершенный вид. А вторая заключается в том, что данная теория полагает, о существовании 10 измерений, но мы ощущаем всего 4 – высота, ширина, длина и время. Ученые предполагают, что остальные 6 — в скрученном состоянии, наличие которых не ощущается в реальном времени. Также проблемой является не возможность экспериментального подтверждения этой теории, но и опровергнуть ее никто не может.

Конечно, струны мироздания едва ли похожи на те, которые мы себе представляем. В теории струн ими называются невероятно малые вибрирующие нити энергии. Эти нити похожи, скорее, на крошечные «резинки», способные извиваться, растягиваться и сжиматься на все лады. Все это, однако, не означает, что на них нельзя «сыграть» симфонию Вселенной, ведь из этих «нитей», по мнению струнных теоретиков, состоит все сущее.

Противоречие физики

Во второй половине XIX века физикам казалось, что ничего серьезного в их науке открыть больше нельзя. Классическая физика считала, что серьезных проблем в ней не осталось, а все устройство мира выглядело идеально отлаженной и предсказуемой машиной. Беда, как и водится, случилась из-за ерунды – одного из мелких «облачков», еще остававшихся на чистом, понятном небе науки. А именно – при расчете энергии излучения абсолютно черного тела (гипотетическое тело, которое при любой температуре полностью поглощает падающее на него излучение, независимо от длины волны – NS).

Расчеты показывали, что общая энергия излучения любого абсолютно черного тела должна быть бесконечно большой. Чтобы уйти от столь явного абсурда, немецкий ученый Макс Планк в 1900 году предположил, что видимый свет, рентгеновские лучи и другие электромагнитные волны могут испускаться только некоторыми дискретными порциями энергии, которые он назвал квантами. С их помощью удалось решить частную проблему абсолютно черного тела. Однако последствия квантовой гипотезы для детерминизма тогда еще не осознавались. Пока в 1926 году другой немецкий ученый, Вернер Гейзенберг, не сформулировал знаменитый принцип неопределенности.

Суть его сводится к тому, что вопреки всем господствующим до того утверждениям, природа ограничивает нашу способность предсказывать будущее на основе физических законов. Речь, конечно, идет о будущем и настоящем субатомных частиц. Выяснилось, что они ведут себя совершенно не так, как это делают любые вещи в окружающем нас макромире. На субатомном уровне ткань пространства становится неровной и хаотичной. Мир крошечных частиц настолько бурный и непонятный, что это противоречит здравому смыслу. Пространство и время в нем настолько искривлены и переплетены, что там нет обычных понятий левого и правого, верха и низа, и даже до и после.

Не существует способа сказать наверняка, в какой именно точке пространства находится в данный момент та или иная частица, и каков при этом момент ее импульса. Существует лишь некая вероятность нахождения частицы во множестве областей пространства-времени. Частицы на субатомном уровне словно «размазаны» по пространству. Мало этого, не определен и сам «статус» частиц: в одних случаях они ведут себя как волны, в других – проявляют свойства частиц. Это то, что физики называют корпускулярно-волновым дуализмом квантовой механики.

Уровни строения мира: 1. Макроскопический уровень – вещество 2. Молекулярный уровень 3. Атомный уровень – протоны, нейтроны и электроны 4. Субатомный уровень – электрон 5. Субатомный уровень – кварки 6. Струнный уровень / ©Bruno P. Ramos

В Общей теории относительности, словно в государстве с противоположными законами, дело обстоит принципиально иначе. Пространство представляется похожим на батут – гладкую ткань, которую могут изгибать и растягивать объекты, обладающие массой. Они создают деформации пространства-времени – то, что мы ощущаем как гравитацию. Стоит ли говорить, что стройная, правильная и предсказуемая Общая теория относительности находится в неразрешимом конфликте с «взбалмошной хулиганкой» – квантовой механикой, и, как следствие, макромир не может «помириться» с микромиром. Вот тут на помощь и приходит теория струн.

2D-Вселенная. Граф полиэдра E8 / ©John Stembridge/Atlas of Lie Groups Project

Теория Всего

Теория струн воплощает мечту всех физиков по объединению двух, в корне противоречащих друг другу ОТО и квантовой механики, мечту, которая до конца дней не давала покоя величайшему «цыгану и бродяге» Альберту Эйнштейну.

Многие ученые уверены, что всё, от изысканного танца галактик до безумной пляски субатомных частиц, может в итоге объясняться всего одним фундаментальным физическим принципом. Может быть – даже единым законом, который объединяет все виды энергии, частиц и взаимодействий в какой-нибудь элегантной формуле.

ОТО описывает одну из самых известных сил Вселенной – гравитацию. Квантовая механика описывает три других силы: сильное ядерное взаимодействие, которое склеивает протоны и нейтроны в атомах, электромагнетизм и слабое взаимодействие, которое участвует в радиоактивном распаде. Любое событие в мироздании, от ионизации атома до рождения звезды, описывается взаимодействиями материи посредством этих четырех сил.

С помощью сложнейшей математики удалось показать, что электромагнитное и слабое взаимодействия имеют общую природу, объединив их в единое электрослабое. Впоследствии к ним добавилось и сильное ядерное взаимодействие – но вот гравитация к ним не присоединяется никак. Теория струн – одна из самых серьезных кандидаток на то, чтобы соединить все четыре силы, а, значит, объять все явления во Вселенной – недаром ее еще называют «Теорией Всего».

Вначале был миф

До сих пор далеко не все физики пребывают в восторге от теории струн. А на заре ее появления она и вовсе казалась бесконечно далекой от реальности. Само ее рождение – легенда.

В конце 1960-х годов молодой итальянский физик-теоретик Габриэле Венециано искал уравнения, которые смогли бы объяснить сильные ядерные взаимодействия – чрезвычайно мощный «клей», который скрепляет ядра атомов, связывая воедино протоны и нейтроны. Согласно легенде, как-то он случайно наткнулся на пыльную книгу по истории математики, в которой нашел функцию двухсотлетней давности, впервые записанную швейцарским математиком Леонардом Эйлером. Каково же было удивление Венециано, когда он обнаружил, что функция Эйлера, которую долгое время считали ничем иным, как математической диковинкой, описывает это сильное взаимодействие.

Как же было на самом деле? Формула, вероятно, стала результатом долгих лет работы Венециано, а случай лишь помог сделать первый шаг к открытию теории струн. Функция Эйлера, чудесным образом объяснившая сильное взаимодействие, обрела новую жизнь.

В конце концов, она попалось на глаза молодому американскому физику-теоретику Леонарду Сасскинду, который увидел, что в первую очередь формула описывала час­тицы, которые не имели внутренней структуры и могли вибрировать. Эти частицы вели себя так, что не могли быть просто точечными частицами. Сасскинд понял – формула описывает нить, которая подобна упругой резинке. Она могла не только растягиваться и сжиматься, но и колебаться, извиваться. Описав свое открытие, Сасскинд представил революционную идею струн.

К сожалению, подавляющее большинство его коллег встретили теорию весьма прохладно.

Стандартная модель

В то время общепринятая наука представляла частицы точками, а не струнами. В течение многих лет физики исследовали поведение субатомных частиц, сталкивая их на высоких скоростях и изучая последствия этих столкновений. Выяснилось, что Вселенная намного богаче, чем это можно было себе представить. Это был настоящий «демографический взрыв» элементарных частиц. Аспиранты физических вузов бегали по коридорам с криками, что открыли новую частицу, – не хватало даже букв для их обозначения. Но, увы, в «родильном доме» новых частиц ученые так и не смогли отыскать ответ на вопрос – зачем их так много и откуда они берутся?

Это подтолкнуло физиков к необычному и потрясающему предсказанию – они поняли, что силы, действующие в природе, также можно объяснить с помощью частиц. То есть существуют частицы материи, а есть частицы-переносчики взаимодействий. Таковым, например, является фотон – частица света. Чем больше этих частиц-перенос­чиков – тех же фотонов, которыми обмениваются частицы материи, тем ярче свет. Ученые предсказывали, что именно этот обмен частицами-переносчиками – есть не что иное, как то, что мы воспринимаем как силу. Это подтвердилось экспериментами. Так физикам удалось приблизиться к мечте Эйнштейна по объединению сил.

Взаимодействия между различными частицами в Стандартной модели /

Ученые считают, что если мы перенесемся к моменту сразу после Большого взрыва, когда Вселенная была на триллионы градусов горячее, частицы-переносчики электромагнетизма и слабого взаимодействия станут неразличимы и объединятся в одну-е­дин­ственную силу, называемую электрослабой. А если вернуться во времени еще дальше, то электрослабое взаимодействие соединилось бы с сильным в одну суммарную «суперсилу».

Несмотря на то, что все это еще ждет своих доказательств, квантовая механика вдруг объяснила, как три из четырех сил взаимодействуют на субатомном уровне. Причем объяснила красиво и непротиворечиво. Эта стройная картина взаимодействий, в конечном счете, получила название Стандартной модели. Но, увы, и в этой совершенной теории была одна большая проблема – она не включала в себя самую известную силу макроуровня – гравитацию.

Гравитон

Для не успевшей «расцвести» теории струн наступила «осень», уж слишком много проблем она содержала с самого рождения. Например, выкладки теории предсказали существование частиц, которых, как точно установили вскоре, не существует. Это так называемый тахион – частица, которая движется в вакууме быстрее света. Помимо прочего выяснилось, что теория требует целых 10 измерений. Неудивительно, что это очень смущало физиков, ведь это очевидно больше, чем то, что мы видим.

К 1973 году только несколько молодых физиков все еще боролись с загадочными выкладками теории струн. Одним из них был американский физик-теоретик Джон Шварц. В течение четырех лет Шварц пытался приручить непослушные уравнения, но без толку. Помимо других проблем, одно из этих уравнений упорно описывало таинственную частицу, которая не имела массы и не наблюдалась в природе.

Ученый уже решил забросить свое гиблое дело, и тут его осенило – может быть, уравнения теории струн описывают, в том числе, и гравитацию? Впрочем, это подразумевало пересмотр размеров главных «героев» теории – струн. Предположив, что струны в миллиарды и миллиарды раз меньше атома, «струнщики» превратили недостаток теории в ее достоинство. Таинственная частица, от которой Джон Шварц так настойчиво пытался избавиться, теперь выступала в качестве гравитона – частицы, которую долго искали и которая позволила бы перенести гравитацию на квантовый уровень. Именно так теория струн дополнила пазл гравитацией, отсутствующей в Стандартной модели. Но, увы, даже на это открытие научное сообщество никак не отреагировало. Теория струн оставалась на грани выживания. Но Шварца это не остановило. Присоединиться к его поискам захотел только один ученый, готовый рискнуть своей карьерой ради таинственных струн – Майкл Грин.

Субатомные матрешки

Несмотря ни на что, в начале 1980?х годов теория струн все еще имела неразрешимые противоречия, называемые в науке аномалиями. Шварц и Грин принялись за их устранение. И усилия их не прошли даром: ученые сумели устранить некоторые противоречия теории. Каково же было изумление этих двоих, уже привыкших к тому, что их теорию пропускают мимо ушей, когда реакция ученого сообщес­тва взорвала научный мир. Меньше чем за год число струнных теоретиков подпрыгнуло до сотен человек. Именно тогда теорию струн наградили титулом Теории Всего. Новая теория, казалось, способна описать все составляющие мироздания. И вот эти составляющие.

Каждый атом, как известно, состоит из еще меньших частиц – электронов, которые кружатся вокруг ядра, состоящего из протонов и нейтронов. Протоны и нейтроны, в свою очередь, состоят из еще меньших частиц – кварков. Но теория струн утверждает, что на кварках дело не заканчивается. Кварки состоят из крошечных извивающихся нитей энергии, которые напоминают струны. Каждая из таких струн невообразимо мала.

Мала настолько, что если бы атом был увеличен до размеров Солнечной системы, струна была бы размером с дерево. Так же, как различные колебания струны виолончели создают то, что мы слышим, как разные музыкальные ноты, различные способы (моды) вибрации струны придают частицам их уникальные свойства – массу, заряд и прочее. Знаете, чем, условно говоря, отличаются протоны в кончике вашего ногтя от пока не открытого гравитона? Только набором крошечных струн, которые их составляют, и тем, как эти струны колеблются.

Конечно, все это более чем удивительно. Еще со времен Древней Греции физики привыкли к тому, что все в этом мире состоит из чего-то вроде шаров, крошечных частиц. И вот, не успев привыкнуть к алогичному поведению этих шаров, вытекающему из квантовой механики, им предлагается вовсе оставить парадигму и оперировать какими-то обрезками спагетти...

Пятое измерение

Хотя многие ученые называют теорию струн триумфом математики, некоторые проблемы у нее все же остаются – прежде всего, отсутствие какой-либо возможности в ближайшее время проверить ее экспериментально. Ни один инструмент в мире, ни существующий, ни способный появиться в перспективе, «увидеть» струны неспособен. Поэтому некоторые ученые, кстати, даже задаются вопросом: теория струн – это теория физики или философии?.. Правда, видеть струны «воочию» вовсе не обязательно. Для доказательства теории струн требуется, скорее, другое – то, что звучит как научная фантастика – подтверждение существования дополнительных измерений пространства.

О чем идет речь? Все мы привыкли к трем измерениям пространства и одному – времени. Но теория струн предсказывает наличие и других – дополнительных – измерений. Но начнем по порядку.

На самом деле, идея о существовании других измерений возникла почти сто лет назад. Пришла она в голову никому не известному тогда немецкому математику Теодору Калуца в 1919 году. Он предположил возможность наличия в нашей Вселенной еще одного измерения, которое мы не видим. Об этой идее узнал Альберт Эйнштейн, и сначала она ему очень понравилась. Позже, однако, он засомневался в ее правильности, и задержал публикацию Калуцы на целых два года. В конечном счете, правда, статья все-таки была опубликована, а дополнительное измерение стало своеобразным увлечением гения физики.

Как известно, Эйнштейн показал, что гравитация есть не что иное, как деформация измерений пространства-времени. Калуца предположил, что электромагнетизм тоже может быть рябью. Почему же мы ее не наблюдаем? Калуца нашел ответ на этот вопрос – рябь электромагнетизма может существовать в дополнительном, скрытом измерении. Но где оно?

Ответ на этот вопрос дал шведский физик Оскар Клейн, который предположил, что пятое измерение Калуцы свернуто в миллиарды раз сильнее, чем размеры одного атома, поэтому мы и не можем его видеть. Идея о существовании этого крошечного измерения, которое находится повсюду вокруг нас, и лежит в основе теории струн.

Одна из предполагаемых форм дополнительных закрученных измерений. Внутри каждой из таких форм вибрирует и движется струна – основной компонент Вселенной. Каждая форма шестимерна – по числу шести дополнительных измерений /

Десять измерений

Но на самом деле уравнения теории струн требуют даже не одного, а шести дополнительных измерений (итого, с известными нам четырьмя, их получается ровно 10). Все они имеют очень закрученную и искривленную сложную форму. И все – невообразимо малы.

Каким же образом эти крошечные измерения могут оказывать влияние на наш большой мир? Согласно теории струн, решающее: для нее все определяет форма. Когда на саксофоне вы нажимаете разные клавиши, вы получаете и разные звуки. Это происходит потому, что при нажатии той или иной клавиши или их комбинации, вы меняете форму пространства в музыкальном инструменте, где циркулирует воздух. Благодаря этому и рождаются разные звуки.

Теория струн полагает, что дополнительные искривленные и закрученные измерения пространства проявляются похожим образом. Формы этих дополнительных измерений сложны и разнообразны, и каждое заставляет вибрировать струну, находящуюся внутри таких измерений, по-разному именно благодаря своим формам. Ведь если предположить, например, что одна струна вибрирует внутри кувшина, а другая – внутри изогнутого почтового рожка, это будут совершенно разные вибрации. Впрочем, если верить теории струн, на деле формы дополнительных измерений выглядят куда сложнее кувшина.

Как устроен мир

Науке сегодня известен набор чисел, которые являются фундаментальными постоянными Вселенной. Именно они определяют свойства и характеристики всего вокруг нас. Среди таких констант, например, заряд электрона, гравитационная постоянная, скорость света в вакууме... И если мы изменим эти числа даже в незначительное число раз – последствия будут катастрофическими. Предположим, мы увеличили силу электромагнитного взаимодействия. Что же произошло? Мы можем вдруг обнаружить, что ионы стали сильнее отталкиваться друг от друга, и термоядерный синтез, который заставляет звезды светить и излучать тепло, вдруг дал сбой. Все звезды погаснут.

Но причем здесь теория струн с ее дополнительными измерениями? Дело в том, что, согласно ей, именно дополнительные измерения определяют точное значение фундаментальных констант. Одни формы измерений заставляют одну струну вибрировать определенным образом, и порождают то, что мы видим, как фотон. В других формах струны вибрируют по-другому, и порождают электрон. Воистину бог кроется в «мелочах» – именно эти крошечные формы определяют все основополагающие константы этого мира.

Теория суперструн

В середине 1980-х годов теория струн приобрела величественный и стройный вид, но внутри этого монумента царила путаница. Всего за несколько лет возникло целых пять версий теории струн. И хотя каждая из них построена на струнах и дополнительных измерениях (все пять версий объединены в общую теорию суперструн – NS), в деталях эти версии расходились значительно.

Так, в одних версиях струны имели открытые концы, в других – напоминали кольца. А в некоторых вариантах теория даже требовала не 10, а целых 26 измерений. Парадокс в том, что все пять версий на сегодняшний день можно назвать одинаково верными. Но какая из них действительно описывает нашу Вселенную? Это очередная загадка теории струн. Именно поэтому многие физики снова махнули рукой на «сумасбродную» теорию.

Но самая главная проблема струн, как уже было сказано, в невозможности (по крайней мере, пока) доказать их наличие экспериментальным путем.

Некоторые ученые, однако, все же поговаривают, что на следующем поколении ускорителей есть очень минимальная, но все же возможность проверить гипотезу о дополнительных измерениях. Хотя большинство, конечно, уверено, что если это и возможно, то произойти это, увы, должно еще очень нескоро – как минимум через десятилетия, как максимум – даже через сотню лет.

Ключевые вопросы:

Каковы фундаментальные компоненты Вселенной -«первокирпичики материи»? Существуют ли теории, способные объяснить все основные физические явления?

Вопрос: это реально?

На сегодняшний день и в обозримом будущем, непосредственное наблюдение в столь малых масштабах не представляется возможным. Физика находится в поиске, и проводимые эксперименты, например, по обнаружению суперсимметричных частиц или поиску дополнительных измерений на ускорителях могут указать, что теория струн находится на верном пути.

Является теория струн теорией всего, или нет, она дает нам в руки уникальный набор инструментов, позволяющий заглянуть в глубинные структуры реальности.

Теория струн


Макро и микро


При описании Вселенной, физика делит ее на две, казалось-бы, несовместимых половинки - квантовый микромир, и макромир, в рамках которого описывается гравитация.


Теория струн это противоречивая попытка объединения этих половинок в «Теорию всего».


Частицы и взаимодействия


Мир сделан из двух видов элементарных частиц - фермионов и бозонов. Фермионы это всё наблюдаемое вещество, а бозоны являются переносчиками четырех известных фундаментальных взаимодействий: слабого, электромагнитного, сильного и гравитационного. В рамках теории, называемой «Стандартно моделью», физикам удалось изящно описать и проверить три фундаментальных взаимодействи все, кроме самого слабого - гравитационного. Hа сегодняшний день Стандартная модель является наиболее точной и экспериментально подтвержденной моделью нашего мира.


Зачем нужна теория струн


Стандартная модель не включает гравитацию, не может описать центр черной дыры и Большой взрыв, не объясняет результаты некоторых экспериментов. Теория струн - это попытка разрешить эти проблемы и унифицировать материю и взаимодействия, заменив элементарные частицы крошечными вибрирующими струнами.



В основе теории струн лежит идея, что все элементарные частицы можно представить в виде одного элементарного «первокирпичика» - струны. Струны могут вибрировать, и разные моды таких колебании на большом удалении будут выглядеть для нас как различные элементарные частицы. Одна мода вибрации заставит струну выглядеть как фотон, другая - как электрон.


Существует даже мода, описывающая переносчик гра в ита цио н но го взаимодействия - гравитон! Варианты теории струн описывают струны двух видов: открытые (1) и замкнутые (2). Открытые струны имеют два конца (3), расположенных на мембрано-подобных структурах, называемых D-бранами, и их динамикой описываются три из четырех фундаментальных взаимодействии - все, за исключением гравитационного.


Замкнутые струны напоминают петли, они не привязаны к D- бранам - именно колебательные моды замкнутых струн представляются безмассовым гравитоном. Концы открытой струны могут соединяться, образуя замкнутую струну, которая, в свою очередь, может разрываться, превратившись в открытую, или сойтись и расщепиться на две замкнутые струны (5) - таким образом в теории струн гравитационное взаимодействие объединяется со всеми остальными



Струны - самые маленькие из всех объектов, которыми оперирует физика. Диапазон размеров V объектов, представленных на картинке выше, простирается на 34 порядка - если бы атом был размером с солнечную систему, то размер струны мог бы быть чуть больше атомного ядра.



Дополнительные измерения


Непротиворечивые теории струн возможны лишь в пространстве высшей размерности, где в дополнение к знакомым нам 4м пространственно-временным измерениям требуется 6 дополнительных. Теоретики полагают, что эти дополнительные измерения свернуты в неуловимо малые формы -пространства Калаби-Яу. Одной из проблем теории струн является то, что существует почти бесконечное количество вариантов свертки (ком пактификации) Калаби-Яу, позволяющее описать какой угодно мир, и пока нет никакой возможности найти тот вариант ко м па ктифи ка ци и, который бы позволял описать то, что мы видим вокруг.


Суперсимметрия


Большинство версий теории струн требует понятия суперсимметрии, в основе которого лежит идея о том, что фермионы (вещество) и бозоны (взаимодействия) суть есть проявления одного и того-же объекта, и могут превращаться друг в друга.


Теория всего?


Суперсимметрию в теорию струн можно включить 5ю различными способами, что приводит к 5 различным видам теории струн, из чего следует, что сама по себе теория струн не может претендовать на звание «теории всего». Все эти пять видов связаны между собой математическими преобразованиями, называемыми дуальностями, и это привело к пониманию, что все эти виды являются аспектами чего-то более общего. Эту более общую теорию называют М-Теорией.



Известно 5 различных формулировок теории струн, однако при ближайшем рассмотрении, выясняется что все они являются проявлениями более общей теории

В конечном счете все элементарные частицы можно представить в виде микроскопических многомерных струн, в которых возбуждены вибрации различных гармоник.

Внимание, пристегните покрепче ремни — и я попробую описать вам одну из самых странных теорий из числа серьезно обсуждаемых сегодня научных кругах, которая способна дать наконец окончательную разгадку устройства Вселенной. Теория эта выглядит настолько дико, что, вполне возможно, она правильна!

Различные версии теории струн сегодня рассматриваются в качестве главных претендентов на звание всеобъемлющей универсальной теории , объясняющей природу всего сущего. А это — своего рода Священный Грааль физиков-теоретиков, занимающихся теорией элементарных частиц и космологии. Универсальная теория (она же теория всего сущего ) содержит всего несколько уравнений, которые объединяют в себе всю совокупность человеческих знаний о характере взаимодействий и свойствах фундаментальных элементов материи, из которых построена Вселенная. Сегодня теорию струн удалось объединить с концепцией суперсимметрии , в результате чего родилась теория суперструн , и на сегодняшний день это максимум того, что удалось добиться в плане объединения теории всех четырех основных взаимодействий (действующих в природе сил). Сама по себе теория суперсимметрии уже построена на основе априорной современной концепции, согласно которой любое дистанционное (полевое) взаимодействие обусловлено обменом частицами-носителями взаимодействия соответствующего рода между взаимодействующими частицами (см. Стандартная модель). Для наглядности взаимодействующие частицы можно считать «кирпичиками» мироздания, а частицы-носители — цементом.

В рамках стандартной модели в роли кирпичиков выступают кварки, а в роли носителей взаимодействия — калибровочные бозоны , которыми эти кварки обмениваются между собой. Теория же суперсимметрии идет еще дальше и утверждает, что и сами кварки и лептоны не фундаментальны: все они состоят из еще более тяжелых и не открытых экспериментально структур (кирпичиков) материи, скрепленных еще более прочным «цементом» сверхэнергетичных частиц-носителей взаимодействий, нежели кварки в составе адронов и бозонов. Естественно, в лабораторных условиях ни одно из предсказаний теории суперсимметрии до сих пор не проверено, однако гипотетические скрытые компоненты материального мира уже имеют названия — например, сэлектрон (суперсимметричный напарник электрона), скварк и т. д. Существование этих частиц, однако, теориями такого рода предсказывается однозначно.

Картину Вселенной, предлагаемую этими теориями, однако, достаточно легко представить себе наглядно. В масштабах порядка 10 -35 м, то есть на 20 порядков меньше диаметра того же протона, в состав которого входят три связанных кварка, структура материи отличается от привычной нам даже на уровне элементарных частиц. На столь малых расстояниях (и при столь высоких энергиях взаимодействий, что это и представить немыслимо) материя превращается в серию полевых стоячих волн, подобных тем, что возбуждаются в струнах музыкальных инструментов. Подобно гитарной струне, в такой струне могут возбуждаться, помимо основного тона, множество обертонов или гармоник. Каждой гармонике соответствует собственное энергетическое состояние. Согласно принципу относительности (см. Теория относительности), энергия и масса эквивалентны, а значит, чем выше частота гармонической волновой вибрации струны, тем выше его энергия, и тем выше масса наблюдаемой частицы.

Однако, если стоячую волну в гитарной струне представить себе наглядно достаточно просто, стоячие волны, предлагаемые теорией суперструн наглядному представлению поддаются с трудом — дело в том, что колебания суперструн происходят в пространстве, имеющем 11 измерений. Мы привыкли к четырехмерному пространству, которое содержит три пространственных и одно временное измерение (влево-вправо, вверх-вниз, вперед-назад, прошлое-будущее). В пространстве суперструн всё обстоит гораздо сложнее (см. вставку). Физики-теоретики обходят скользкую проблему «лишних» пространственных измерений, утверждая, что они «скрадываются» (или, научным языком выражаясь, «компактифицируются») и потому не наблюдаются при обычных энергиях.

Совсем уже недавно теория струн получила дальнейшее развитие в виде теории многомерных мембран — по сути, это те же струны, но плоские. Как походя пошутил кто-то из ее авторов, мембраны отличаются от струн примерно тем же, чем лапша отличается от вермишели.

Вот, пожалуй, и всё, что можно вкратце рассказать об одной из теорий, не без основания претендующих на сегодняшний день на звание универсальной теории Великого объединения всех силовых взаимодействий. Увы, и эта теория небезгрешна. Прежде всего, она до сих пор не приведена к строгому математическому виду по причине недостаточности математического аппарата для ее приведения в строгое внутреннее соответствие. Прошло уже 20 лет, как эта теория появилась на свет, а непротиворечиво согласовать одни ее аспекты и версии с другими так никому и не удалось. Еще неприятнее то, что никто из теоретиков, предлагающих теорию струн (и, тем более суперструн) до сих пор не предложил ни одного опыта, на котором эти теории можно было бы проверить лабораторно. Увы, боюсь, что до тех пор, пока они этого не сделают, вся их работа так и останется причудливой игрой фантазии и упражнениями в постижении эзотерических знаний за пределами основного русла естествознания.

См. также:

1972

Квантовая хромодинамика

Сколько же всего измерений?

Нам, простым людям, всегда хватало и трех измерений. С незапамятных времен мы привыкли описывать физический мир в столь скромных рамках (саблезубый тигр в 40 метрах спереди, 11 метрах правее и 4 метрах выше меня — булыжник к бою!). Теория относительности приучила большинство из нас к тому, что время — суть четвертое измерение (саблезубый тигр не просто здесь — он здесь и сейчас угрожает нам!). И вот, начиная с середины ХХ века, теоретики повели разговоры, что на самом деле измерений еще больше — не то 10, не то 11, не то вообще 26. Конечно, без объяснений, почему мы, нормальные люди, их не наблюдаем, тут обойтись не могло. И тогда возникла концепция «компактификации» — слипания или схлопывания измерений.

Представим садовый поливочный шланг. Вблизи он воспринимается как нормальный трехмерный объект. Стоит, однако, отойти от шланга на достаточное расстояние — и он представится нам одномерным линейным объектом: его толщину мы попросту перестанем воспринимать. Именно о таком эффекте и принято говорить, как о компактификации измерения: в данном случае «компактифицированной» оказалась толщина шланга — слишком мала шкала масштаба измерения.

Именно так, по утверждениям теоретиков, исчезают из поля нашего экспериментального восприятия реально существующие дополнительные измерения, необходимые для адекватного объяснения свойств материи на субатомном уровне: они компактифицируются, начиная с шкалы масштабов порядка 10 -35 м, и современные методы наблюдения и измерительные приборы просто не в состоянии обнаружить структур столь малого масштаба. Возможно, всё именно так и есть, а возможно, всё обстоит совершенно по-другому. Пока нет таких приборов и методов наблюдения, все вышеприведенные доводы и контрдоводы так и останутся на уровне досужих спекуляций.

Конечно, струны мироздания едва ли похожи на те, которые мы себе представляем. В теории струн ими называются невероятно малые вибрирующие нити энергии. Эти нити похожи, скорее, на крошечные «резинки», способные извиваться, растягиваться и сжиматься на все лады. Все это, однако, не означает, что на них нельзя «сыграть» симфонию Вселенной, ведь из этих «нитей», по мнению струнных теоретиков, состоит все сущее.

Противоречие физики

Во второй половине XIX века физикам казалось, что ничего серьезного в их науке открыть больше нельзя. Классическая физика считала, что серьезных проблем в ней не осталось, а все устройство мира выглядело идеально отлаженной и предсказуемой машиной. Беда, как и водится, случилась из-за ерунды – одного из мелких «облачков», еще остававшихся на чистом, понятном небе науки. А именно – при расчете энергии излучения абсолютно черного тела (гипотетическое тело, которое при любой температуре полностью поглощает падающее на него излучение, независимо от длины волны – NS). Расчеты показывали, что общая энергия излучения любого абсолютно черного тела должна быть бесконечно большой. Чтобы уйти от столь явного абсурда, немецкий ученый Макс Планк в 1900 году предположил, что видимый свет, рентгеновские лучи и другие электромагнитные волны могут испускаться только некоторыми дискретными порциями энергии, которые он назвал квантами. С их помощью удалось решить частную проблему абсолютно черного тела. Однако последствия квантовой гипотезы для детерминизма тогда еще не осознавались. Пока в 1926 году другой немецкий ученый, Вернер Гейзенберг, не сформулировал знаменитый принцип неопределенности.

Суть его сводится к тому, что вопреки всем господствующим до того утверждениям, природа ограничивает нашу способность предсказывать будущее на основе физических законов. Речь, конечно, идет о будущем и настоящем субатомных частиц. Выяснилось, что они ведут себя совершенно не так, как это делают любые вещи в окружающем нас макромире. На субатомном уровне ткань пространства становится неровной и хаотичной. Мир крошечных частиц настолько бурный и непонятный, что это противоречит здравому смыслу. Пространство и время в нем настолько искривлены и переплетены, что там нет обычных понятий левого и правого, верха и низа, и даже до и после. Не существует способа сказать наверняка, в какой именно точке пространства находится в данный момент та или иная частица, и каков при этом момент ее импульса. Существует лишь некая вероятность нахождения частицы во множестве областей пространства-времени. Частицы на субатомном уровне словно «размазаны» по пространству. Мало этого, не определен и сам «статус» частиц: в одних случаях они ведут себя как волны, в других – проявляют свойства частиц. Это то, что физики называют корпускулярно-волновым дуализмом квантовой механики.

Уровни строения мира: 1. Макроскопический уровень – вещество 2. Молекулярный уровень 3. Атомный уровень – протоны, нейтроны и электроны 4. Субатомный уровень – электрон 5. Субатомный уровень – кварки 6. Струнный уровень / ©Bruno P. Ramos

В Общей теории относительности, словно в государстве с противоположными законами, дело обстоит принципиально иначе. Пространство представляется похожим на батут – гладкую ткань, которую могут изгибать и растягивать объекты, обладающие массой. Они создают деформации пространства-времени – то, что мы ощущаем как гравитацию. Стоит ли говорить, что стройная, правильная и предсказуемая Общая теория относительности находится в неразрешимом конфликте с «взбалмошной хулиганкой» – квантовой механикой, и, как следствие, макромир не может «помириться» с микромиром. Вот тут на помощь и приходит теория струн.


2D-Вселенная. Граф полиэдра E8 / ©John Stembridge/Atlas of Lie Groups Project

Теория Всего

Теория струн воплощает мечту всех физиков по объединению двух, в корне противоречащих друг другу ОТО и квантовой механики, мечту, которая до конца дней не давала покоя величайшему «цыгану и бродяге» Альберту Эйнштейну.

Многие ученые уверены, что всё, от изысканного танца галактик до безумной пляски субатомных частиц, может в итоге объясняться всего одним фундаментальным физическим принципом. Может быть – даже единым законом, который объединяет все виды энергии, частиц и взаимодействий в какой-нибудь элегантной формуле.

ОТО описывает одну из самых известных сил Вселенной – гравитацию. Квантовая механика описывает три других силы: сильное ядерное взаимодействие, которое склеивает протоны и нейтроны в атомах, электромагнетизм и слабое взаимодействие, которое участвует в радиоактивном распаде. Любое событие в мироздании, от ионизации атома до рождения звезды, описывается взаимодействиями материи посредством этих четырех сил. С помощью сложнейшей математики удалось показать, что электромагнитное и слабое взаимодействия имеют общую природу, объединив их в единое электрослабое. Впоследствии к ним добавилось и сильное ядерное взаимодействие – но вот гравитация к ним не присоединяется никак. Теория струн – одна из самых серьезных кандидаток на то, чтобы соединить все четыре силы, а, значит, объять все явления во Вселенной – недаром ее еще называют «Теорией Всего».

Вначале был миф


График бета-функции Эйлера при вещественных аргументах / ©Flickr

До сих пор далеко не все физики пребывают в восторге от теории струн. А на заре ее появления она и вовсе казалась бесконечно далекой от реальности. Само ее рождение – легенда.

В конце 1960-х годов молодой итальянский физик-теоретик Габриэле Венециано искал уравнения, которые смогли бы объяснить сильные ядерные взаимодействия – чрезвычайно мощный «клей», который скрепляет ядра атомов, связывая воедино протоны и нейтроны. Согласно легенде, как-то он случайно наткнулся на пыльную книгу по истории математики, в которой нашел функцию двухсотлетней давности, впервые записанную швейцарским математиком Леонардом Эйлером. Каково же было удивление Венециано, когда он обнаружил, что функция Эйлера, которую долгое время считали ничем иным, как математической диковинкой, описывает это сильное взаимодействие.

Как же было на самом деле? Формула, вероятно, стала результатом долгих лет работы Венециано, а случай лишь помог сделать первый шаг к открытию теории струн. Функция Эйлера, чудесным образом объяснившая сильное взаимодействие, обрела новую жизнь.

В конце концов, она попалось на глаза молодому американскому физику-теоретику Леонарду Сасскинду, который увидел, что в первую очередь формула описывала час­тицы, которые не имели внутренней структуры и могли вибрировать. Эти частицы вели себя так, что не могли быть просто точечными частицами. Сасскинд понял – формула описывает нить, которая подобна упругой резинке. Она могла не только растягиваться и сжиматься, но и колебаться, извиваться. Описав свое открытие, Сасскинд представил революционную идею струн.

К сожалению, подавляющее большинство его коллег встретили теорию весьма прохладно.

Стандартная модель

В то время общепринятая наука представляла частицы точками, а не струнами. В течение многих лет физики исследовали поведение субатомных частиц, сталкивая их на высоких скоростях и изучая последствия этих столкновений. Выяснилось, что Вселенная намного богаче, чем это можно было себе представить. Это был настоящий «демографический взрыв» элементарных частиц. Аспиранты физических вузов бегали по коридорам с криками, что открыли новую частицу, – не хватало даже букв для их обозначения.

Но, увы, в «родильном доме» новых частиц ученые так и не смогли отыскать ответ на вопрос – зачем их так много и откуда они берутся?

Это подтолкнуло физиков к необычному и потрясающему предсказанию – они поняли, что силы, действующие в природе, также можно объяснить с помощью частиц. То есть существуют частицы материи, а есть частицы-переносчики взаимодействий. Таковым, например, является фотон – частица света. Чем больше этих частиц-перенос­чиков – тех же фотонов, которыми обмениваются частицы материи, тем ярче свет. Ученые предсказывали, что именно этот обмен частицами-переносчиками – есть не что иное, как то, что мы воспринимаем как силу. Это подтвердилось экспериментами. Так физикам удалось приблизиться к мечте Эйнштейна по объединению сил.


Взаимодействия между различными частицами в Стандартной модели / ©Wikimedia Commons

Ученые считают, что если мы перенесемся к моменту сразу после Большого взрыва, когда Вселенная была на триллионы градусов горячее, частицы-переносчики электромагнетизма и слабого взаимодействия станут неразличимы и объединятся в одну-е­дин­ственную силу, называемую электрослабой. А если вернуться во времени еще дальше, то электрослабое взаимодействие соединилось бы с сильным в одну суммарную «суперсилу».

Несмотря на то, что все это еще ждет своих доказательств, квантовая механика вдруг объяснила, как три из четырех сил взаимодействуют на субатомном уровне. Причем объяснила красиво и непротиворечиво. Эта стройная картина взаимодействий, в конечном счете, получила название Стандартной модели. Но, увы, и в этой совершенной теории была одна большая проблема – она не включала в себя самую известную силу макроуровня – гравитацию.


©Wikimedia Commons

Гравитон

Для не успевшей «расцвести» теории струн наступила «осень», уж слишком много проблем она содержала с самого рождения. Например, выкладки теории предсказали существование частиц, которых, как точно установили вскоре, не существует. Это так называемый тахион – частица, которая движется в вакууме быстрее света. Помимо прочего выяснилось, что теория требует целых 10 измерений. Неудивительно, что это очень смущало физиков, ведь это очевидно больше, чем то, что мы видим.

К 1973 году только несколько молодых физиков все еще боролись с загадочными выкладками теории струн. Одним из них был американский физик-теоретик Джон Шварц. В течение четырех лет Шварц пытался приручить непослушные уравнения, но без толку. Помимо других проблем, одно из этих уравнений упорно описывало таинственную частицу, которая не имела массы и не наблюдалась в природе.

Ученый уже решил забросить свое гиблое дело, и тут его осенило – может быть, уравнения теории струн описывают, в том числе, и гравитацию? Впрочем, это подразумевало пересмотр размеров главных «героев» теории – струн. Предположив, что струны в миллиарды и миллиарды раз меньше атома, «струнщики» превратили недостаток теории в ее достоинство. Таинственная частица, от которой Джон Шварц так настойчиво пытался избавиться, теперь выступала в качестве гравитона – частицы, которую долго искали и которая позволила бы перенести гравитацию на квантовый уровень. Именно так теория струн дополнила пазл гравитацией, отсутствующей в Стандартной модели. Но, увы, даже на это открытие научное сообщество никак не отреагировало. Теория струн оставалась на грани выживания. Но Шварца это не остановило. Присоединиться к его поискам захотел только один ученый, готовый рискнуть своей карьерой ради таинственных струн – Майкл Грин.


Американский физик-теоретик Джон Шварц и Майкл Грин

©California Institute of Technology/elementy.ru

Какие есть основания думать, что гравитация подчиняется законам квантовой механики? За открытие этих «оснований» в 2011 году была вручена Нобелевская премия по физике. Состояло оно в том, что расширение Вселенной не замедляется, как думали когда-то, а, наоборот, ускоряется. Объясняют это ускорение действием особой «антигравитации», которая каким-то образом свойственна пустому пространству космического вакуума. С другой стороны, на квантовом уровне ничего абсолютно «пустого» быть не может – в вакууме постоянно возникают и тут же исчезают субатомные частицы. Такое «мелькание» частиц, как полагают, и ответственно за существование «антигравитационной» темной энергии, которая наполняет пустое пространство.

В свое время именно Альберт Эйнштейн, до конца жизни так и не принявший парадоксальные принципы квантовой механики (которую он сам и предсказал), предположил существование этой формы энергии. Следуя традициям классической греческой философии Аристотеля с ее верой в вечность мира, Эйнштейн отказывался поверить в то, что предсказывала его собственная теория, а именно то, что Вселенная имеет начало. Чтобы «увековечить» мироздание, Эйнштейн даже ввел в свою теорию некую космологическую постоянную, и таким образом описал энергию пустого пространства. К счастью, через несколько лет выяснилось, что Вселенная – вовсе не застывшая форма, что она расширяется. Тогда Эйнштейн отказался от космологической постоянной, назвав ее «величайшим просчетом в своей жизни».

Сегодня науке известно – темная энергия все-таки существует, хотя плотность ее намного меньше той, что предполагал Эйнштейн (проблема плотности темной энергии, кстати, – одна из величайших загадок современной физики). Но как бы ни была мала величина космологической постоянной, ее вполне достаточно для того, чтобы убедиться в том, что квантовые эффекты в гравитации существуют.

Субатомные матрешки

Несмотря ни на что, в начале 1980‑х годов теория струн все еще имела неразрешимые противоречия, называемые в науке аномалиями. Шварц и Грин принялись за их устранение. И усилия их не прошли даром: ученые сумели устранить некоторые противоречия теории. Каково же было изумление этих двоих, уже привыкших к тому, что их теорию пропускают мимо ушей, когда реакция ученого сообщес­тва взорвала научный мир. Меньше чем за год число струнных теоретиков подпрыгнуло до сотен человек. Именно тогда теорию струн наградили титулом Теории Всего. Новая теория, казалось, способна описать все составляющие мироздания. И вот эти составляющие.

Каждый атом, как известно, состоит из еще меньших частиц – электронов, которые кружатся вокруг ядра, состоящего из протонов и нейтронов. Протоны и нейтроны, в свою очередь, состоят из еще меньших частиц – кварков. Но теория струн утверждает, что на кварках дело не заканчивается. Кварки состоят из крошечных извивающихся нитей энергии, которые напоминают струны. Каждая из таких струн невообразимо мала. Мала настолько, что если бы атом был увеличен до размеров Солнечной системы, струна была бы размером с дерево. Так же, как различные колебания струны виолончели создают то, что мы слышим, как разные музыкальные ноты, различные способы (моды) вибрации струны придают частицам их уникальные свойства – массу, заряд и прочее. Знаете, чем, условно говоря, отличаются протоны в кончике вашего ногтя от пока не открытого гравитона? Только набором крошечных струн, которые их составляют, и тем, как эти струны колеблются.

Конечно, все это более чем удивительно. Еще со времен Древней Греции физики привыкли к тому, что все в этом мире состоит из чего-то вроде шаров, крошечных частиц. И вот, не успев привыкнуть к алогичному поведению этих шаров, вытекающему из квантовой механики, им предлагается вовсе оставить парадигму и оперировать какими-то обрезками спагетти...

Пятое измерение

Хотя многие ученые называют теорию струн триумфом математики, некоторые проблемы у нее все же остаются – прежде всего, отсутствие какой-либо возможности в ближайшее время проверить ее экспериментально. Ни один инструмент в мире, ни существующий, ни способный появиться в перспективе, «увидеть» струны неспособен. Поэтому некоторые ученые, кстати, даже задаются вопросом: теория струн – это теория физики или философии?.. Правда, видеть струны «воочию» вовсе не обязательно. Для доказательства теории струн требуется, скорее, другое – то, что звучит как научная фантастика – подтверждение существования дополнительных измерений пространства.

О чем идет речь? Все мы привыкли к трем измерениям пространства и одному – времени. Но теория струн предсказывает наличие и других – дополнительных – измерений. Но начнем по порядку.

На самом деле, идея о существовании других измерений возникла почти сто лет назад. Пришла она в голову никому не известному тогда немецкому математику Теодору Калуца в 1919 году. Он предположил возможность наличия в нашей Вселенной еще одного измерения, которое мы не видим. Об этой идее узнал Альберт Эйнштейн, и сначала она ему очень понравилась. Позже, однако, он засомневался в ее правильности, и задержал публикацию Калуцы на целых два года. В конечном счете, правда, статья все-таки была опубликована, а дополнительное измерение стало своеобразным увлечением гения физики.

Как известно, Эйнштейн показал, что гравитация есть не что иное, как деформация измерений пространства-времени. Калуца предположил, что электромагнетизм тоже может быть рябью. Почему же мы ее не наблюдаем? Калуца нашел ответ на этот вопрос – рябь электромагнетизма может существовать в дополнительном, скрытом измерении. Но где оно?

Ответ на этот вопрос дал шведский физик Оскар Клейн, который предположил, что пятое измерение Калуцы свернуто в миллиарды раз сильнее, чем размеры одного атома, поэтому мы и не можем его видеть. Идея о существовании этого крошечного измерения, которое находится повсюду вокруг нас, и лежит в основе теории струн.


Одна из предполагаемых форм дополнительных закрученных измерений. Внутри каждой из таких форм вибрирует и движется струна – основной компонент Вселенной. Каждая форма шестимерна – по числу шести дополнительных измерений / ©Wikimedia Commons

Десять измерений

Но на самом деле уравнения теории струн требуют даже не одного, а шести дополнительных измерений (итого, с известными нам четырьмя, их получается ровно 10). Все они имеют очень закрученную и искривленную сложную форму. И все – невообразимо малы.

Каким же образом эти крошечные измерения могут оказывать влияние на наш большой мир? Согласно теории струн, решающее: для нее все определяет форма. Когда на саксофоне вы нажимаете разные клавиши, вы получаете и разные звуки. Это происходит потому, что при нажатии той или иной клавиши или их комбинации, вы меняете форму пространства в музыкальном инструменте, где циркулирует воздух. Благодаря этому и рождаются разные звуки.

Теория струн полагает, что дополнительные искривленные и закрученные измерения пространства проявляются похожим образом. Формы этих дополнительных измерений сложны и разнообразны, и каждое заставляет вибрировать струну, находящуюся внутри таких измерений, по-разному именно благодаря своим формам. Ведь если предположить, например, что одна струна вибрирует внутри кувшина, а другая – внутри изогнутого почтового рожка, это будут совершенно разные вибрации. Впрочем, если верить теории струн, на деле формы дополнительных измерений выглядят куда сложнее кувшина.

Как устроен мир

Науке сегодня известен набор чисел, которые являются фундаментальными постоянными Вселенной. Именно они определяют свойства и характеристики всего вокруг нас. Среди таких констант, например, заряд электрона, гравитационная постоянная, скорость света в вакууме... И если мы изменим эти числа даже в незначительное число раз – последствия будут катастрофическими. Предположим, мы увеличили силу электромагнитного взаимодействия. Что же произошло? Мы можем вдруг обнаружить, что ионы стали сильнее отталкиваться друг от друга, и термоядерный синтез, который заставляет звезды светить и излучать тепло, вдруг дал сбой. Все звезды погаснут.

Но причем здесь теория струн с ее дополнительными измерениями? Дело в том, что, согласно ей, именно дополнительные измерения определяют точное значение фундаментальных констант. Одни формы измерений заставляют одну струну вибрировать определенным образом, и порождают то, что мы видим, как фотон. В других формах струны вибрируют по-другому, и порождают электрон. Воистину бог кроется в «мелочах» – именно эти крошечные формы определяют все основополагающие константы этого мира.

Теория суперструн

В середине 1980-х годов теория струн приобрела величественный и стройный вид, но внутри этого монумента царила путаница. Всего за несколько лет возникло целых пять версий теории струн. И хотя каждая из них построена на струнах и дополнительных измерениях (все пять версий объединены в общую теорию суперструн – NS), в деталях эти версии расходились значительно.

Так, в одних версиях струны имели открытые концы, в других – напоминали кольца. А в некоторых вариантах теория даже требовала не 10, а целых 26 измерений. Парадокс в том, что все пять версий на сегодняшний день можно назвать одинаково верными. Но какая из них действительно описывает нашу Вселенную? Это очередная загадка теории струн. Именно поэтому многие физики снова махнули рукой на «сумасбродную» теорию.

Но самая главная проблема струн, как уже было сказано, в невозможности (по крайней мере, пока) доказать их наличие экспериментальным путем.

Некоторые ученые, однако, все же поговаривают, что на следующем поколении ускорителей есть очень минимальная, но все же возможность проверить гипотезу о дополнительных измерениях. Хотя большинство, конечно, уверено, что если это и возможно, то произойти это, увы, должно еще очень нескоро – как минимум через десятилетия, как максимум – даже через сотню лет.