Что такое электромагнитные поля (ЭМП). Электромагнитное поле, его влияние на человека, измерение и защита


Подробности Категория: Электричество и магнетизм Опубликовано 05.06.2015 20:46 Просмотров: 11962

Переменные электрическое и магнитное поля при определённых условиях могут порождать друг друга. Они образуют электромагнитное поле, которое вовсе не является их совокупностью. Это единое целое, в котором эти два поля не могут существовать друг без друга.

Из истории

Опыт датского учёного Ханса Кристиана Эрстеда, проведенный в 1821 г., показал, что электрический ток порождает магнитное поле . В свою очередь, изменяющееся магнитное поле способно порождать электрический ток . Это доказал английский физик Майкл Фарадей , открывший в 1831 г. явление электромагнитной индукции. Он же является автором термина «электромагнитное поле».

В те времена в физике была принята концепция дальнодействия Ньютона . Считалось, что все тела действуют друг на друга через пустоту с бесконечно большой скоростью (практически мгновенно) и на любом расстоянии. Предполагалось, что и электрические заряды взаимодействуют подобным образом. Фарадей же считал, что пустоты в природе не существует, а взаимодействие происходит с конечной скоростью через некую материальную среду. Этой средой для электрических зарядов является электромагнитное поле . И оно распространяется со скоростью, равной скорости света .

Теория Максвелла

Объединив результаты предыдущих исследований, английский физик Джеймс Клерк Максвелл в 1864 г. создал теорию электромагнитного поля . Согласно ей, изменяющееся магнитное поле порождает изменяющееся электрическое поле, а переменное электрическое поле порождает переменное магнитное поле. Конечно, вначале одно из полей создаётся источником зарядов или токов. Но в дальнейшем эти поля уже могут существовать независимо от таких источников, вызывая появление друг друга. То есть, электрическое и магнитное поля являются составляющими единого электромагнитного поля . И всякое изменение одного из них вызывает появление другого. Эта гипотеза составляет основу теории Максвелла. Электрическое поле, порождаемое магнитным полем, является вихревым. Его силовые линии замкнуты.

Эта теория феноменологическая. Это означает, что она создана на основе предположений и наблюдений, и не рассматривает причину, вызывающую возникновение электрических и магнитных полей.

Свойства электромагнитного поля

Электромагнитное поле - это совокупность электрического и магнитного полей, поэтому в каждой точке своего пространства оно описывается двумя основными величинами: напряжённостью электрического поля Е и индукцией магнитного поля В .

Так как электромагнитное поле представляет собой процесс превращения электрического поля в магнитное, а затем магнитного в электрическое, то его состояние постоянно меняется. Распространяясь в пространстве и времени, оно образует электромагнитные волны. В зависимости от частоты и длины эти волны разделяют на радиоволны, терагерцовое излучение, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновское и гамма-излучение .

Векторы напряжённости и индукции электромагнитного поля взаимно перпендикулярны, а плоскость в которой они лежат, перпендикулярна направлению распространения волны.

В теории дальнодействия скорость распространения электромагнитных волн считалась бесконечной большой. Однако Максвелл доказал, что это не так. В веществе электромагнитные волны распространяются с конечной скоростью, которая зависит от диэлектрической и магнитной проницаемости вещества. Поэтому Теорию Максвелла называют теорией близкодействия.

Экспериментально теорию Максвелла подтвердил в 1888 г. немецкий физик Генрих Рудольф Герц. Он доказал, что электромагнитные волны существуют. Более того, он измерил скорость распространения электромагнитных волн в вакууме, которая оказалась равной скорости света.

В интегральной форме этот закон выглядит так:

Закон Гаусса для магнитного поля

Поток магнитной индукции через замкнутую поверхность равен нулю .

Физический смысл этого закона в том, что в природе не существует магнитных зарядов. Полюса магнита разделить невозможно. Силовые линии магнитного поля замкнуты.

Закон индукции Фарадея

Изменение магнитной индукции вызывает появление вихревого электрического поля.

,

Теорема о циркуляции магнитного поля

В этой теореме описаны источники магнитного пόля , а также сами поля, создаваемые ими.

Электрический ток и изменение электрической индукции порождают вихревое магнитное поле .

,

,

Е – напряжённость электрического поля;

Н – напряжённость магнитного поля;

В – магнитная индукция. Это векторная величина, показывающая, с какой силой магнитное поле действует на заряд величиной q, движущийся со скоростью v;

D – электрическая индукция, или электрическое смещение. Представляет собой векторную величину, равную сумме вектора напряжённости и вектора поляризации. Поляризация вызывается смещением электрических зарядов под действием внешнего электрического поля относительно их положения, когда такое поле отсутствует.

Δ – оператор Набла. Действие этого оператора на конкретное поле называют ротором этого поля.

Δ х Е = rot E

ρ - плотность стороннего электрического заряда;

j - плотность тока - величина, показывающая силу тока, протекающего через единицу площади;

с – скорость света в вакууме.

Изучением электромагнитного поля занимается наука, называемая электродинамикой . Она рассматривает его взаимодействие с телами, имеющими электрический заряд. Такое взаимодействие называется электромагнитным . Классическая электродинамика описывает только непрерывные свойства электромагнитного поля с помощью уравнений Максвелла. Современная квантовая электродинамика считает, что электромагнитное поле обладает также и дискретными (прерывными) свойствами. И такое электромагнитное взаимодействие происходит с помощью неделимых частиц-квантов, не имеющих массы и заряда. Квант электромагнитного поля называют фотоном .

Электромагнитное поле вокруг нас

Электромагнитное поле образуется вокруг любого проводника с переменным током. Источниками электромагнитных полей являются линии электропередач, электродвигатели, трансформаторы, городской электрический транспорт, железнодорожный транспорт, электрическая и электронная бытовая техника – телевизоры, компьютеры, холодильники, утюги, пылесосы, радиотелефоны, мобильные телефоны, электробритвы - словом, всё, что связано с потреблением или передачей электроэнергии. Мощные источники электромагнитных полей – телевизионные передатчики, антенны станций сотовой телефонной связи, радиолокационные станции, СВЧ-печи и др. А так как таких устройств вокруг нас довольно много, то электромагнитные поля окружают нас повсюду. Эти поля воздействуют на окружающую среду и человека. Нельзя сказать, что это влияние всегда негативное. Электрические и магнитные поля существовали вокруг человека давно, но мощность их излучения ещё несколько десятилетий назад был в сотни раз ниже нынешнего.

До определённого уровня электромагнитное излучение может быть безопасным для человека. Так, в медицине с помощью электромагнитного излучения низкой интенсивности заживляют ткани, устраняют воспалительные процессы, оказывают обезболивающее действие. Аппараты УВЧ снимают спазмы гладкой мускулатуры кишечника и желудка, улучшают обменные процессы в клетках организма, снижая тонус капилляров, понижают артериальное давление.

Но сильные электромагнитные поля вызывают сбои в работе сердечно-сосудистой, имунной, эндокринной и нервной систем человека, могут вызывать бессонницу, головные боли, стрессы. Опасность в том, что их воздействие практически незаметно для человека, а нарушения возникают постепенно.

Каким образом защититься от окружающего нас электромагнитного излучения? Полностью это сделать невозможно, поэтому нужно постараться свести к минимуму его воздействие. Прежде всего нужно расположить бытовые приборы таким образом, чтобы они находились подальше от тех мест, где мы находимся чаще всего. Например, не нужно садиться слишком близко к телевизору. Ведь чем дальше расстояние от источника электромагнитного поля, тем слабее оно становится. Очень часто мы оставляем прибор, включенным в розетку. Но электромагнитное поле исчезает, лишь когда прибор отключается от электрической сети.

Влияют на здоровье человека и естественные электромагнитные поля – космическое излучение, магнитное поле Земли.

Электромагнитное поле

Электромагнитное поле относится к такому виду материи, которая возникает вокруг движущихся зарядов. Оно состоит из электрического, а также магнитного полей. Их существование взаимосвязано, так как существовать отдельно и независимо друг от друга они не могут, потому что, одно поле порождает другое.

А теперь попробуем подойти к теме электромагнитного поля более подробно. Из определения можно сделать вывод, что в случае изменения электрического поля появляются предпосылки к возникновению магнитного поля. А так как электрическое поле имеет свойство со временем изменяться и его нельзя назвать неизменным, то магнитное поле также является переменным.

При изменении одного поля, порождается другое. И независимо от того, каким будет последующее поле, источником будет служить предыдущее поле, то есть проводник с током, а не первоначальный его источник.

И даже в том случае, когда в проводнике будет отключен ток, все равно электромагнитное поле никуда не исчезнет, а будет продолжать существовать и распространятся в пространстве.

Свойства электромагнитных волн

Теория Максвелла. Вихревое электрическое поле

Джеймсом Клерком Максвеллом, известным британским физиком в 1857 году была написана работа, в которой он привел доказательства того, что такие поля, как электрическое и магнитное тесно связаны между собой.

По его теории следовало, что переменное магнитное поле имеет свойство создавать такое новое ЭП, которое отличается от предыдущего электрического поля, созданного при помощи источника тока, так как это новое электрическое поле является вихревым.

И здесь мы с вами видим, что вихревым электрическим полем является такое поле, у которого силовые линии являются замкнутыми. То есть, следует отметить, что у электрического поля линии такие же замкнутые, как и у магнитного поля.

Из этого следует вывод, что переменное магнитное поле способно создавать вихревое электрическое поле, а вихревое электрическое поле имеет способность заставить двигаться заряды. И в итоге мы получаем индукционный электрический ток. Из работы Максвелла следует, что такие поля, как электрическое и магнитное тесно существуют друг с другом.

То есть, для существования магнитного поля необходим движущийся электрический заряд. Ну а электрическое поле создается благодаря покоящемуся электрическому заряду. Вот такая прозрачная взаимосвязь существует между полями. Из этого мы можем сделать еще один вывод, что в разных системах отсчета можно наблюдать различные виды полей.

Если следовать теории Максвелла, то можно подвести итог, что переменные электрические и магнитные поля не способны существовать по отдельности, ведь при изменении магнитное поле порождает электрическое, а меняющееся электрическое поле порождает магнитное.

Природные источники электромагнитных полей

Для современного человека не является секретом тот факт, что электромагнитные поля хоть и остаются невидимыми нашему глазу, но окружают нас повсюду.

К природным источникам ЭМП относятся:

Во-первых, это постоянное электрическое и магнитное поло Земли.
Во-вторых, к таким источникам относятся радиоволны, преобразовывающие такие космические источники, как Солнце, звезды и т.д.
В-третьих, этими источниками выступают и такие атмосферные процессы, как разряды молний и т.д.

Антропогенные (искусственные) источники электромагнитных полей

Кроме природных источников появления ЭМП, они еще возникают и благодаря антропогенными источниками. К таким источникам можно отнести рентгеновские лучи, которые используют в медицинских учреждениях. Они используются и для передачи информации при помощи различных радиостанций, станций мобильной связи и также ТВ антенн. Да и электричество, которое есть в каждой розетке, также образовывает ЭМП, но правда, более низкой частоты.

Влияние ЭМП на здоровье человека



Современное общество в настоящее время не мыслит своей жизни, без таких благ цивилизации, как присутствие различной бытовой техники, компьютеров, мобильной связи. Они, конечно же, облегчают нашу жизнь, но создают вокруг нас электромагнитные поля. Естественно, мы с вами ЭМП не можем видеть, но они нас окружают повсюду. Они присутствуют в наших домах, на работе и даже в транспорте.

Можно смело сказать, что современный человек живет в сплошном электромагнитном поле, которое, к сожалению, оказывает огромное влияние на здоровье человека. При длительном влиянии электромагнитного поля на организм человека, появляются такие неприятные симптомы, как хроническая усталость, раздражительность, нарушение сна, внимания и памяти. Такое продолжительное воздействие ЭМП способно вызвать у человека головную боль, бесплодие, нарушения в работе нервной и сердечной систем, а так же появление онкологических заболеваний.

Шмелев В.Е., Сбитнев С.А.

"ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ"

"ТЕОРИЯ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ"

Глава 1. Основные понятия теории электромагнитного поля

§ 1.1. Определение электромагнитного поля и его физических величин.
Математический аппарат теории электромагнитного поля

Электромагнитным полем (ЭМП) называется вид материи, оказывающий на заряженные частицы силовое воздействие и определяемый во всех точках двумя парами векторных величин, которые характеризуют две его стороны - электрическое и магнитное поля.

Электрическое поле - это составляющая ЭМП, которая характеризуется воздействием на электрически заряженную частицу с силой, пропорциональной заряду частицы и не зависящей от ее скорости.

Магнитное поле - это составляющая ЭМП, которая характеризуется воздействием на движущуюся частицу с силой, пропорциональной заряду частицы и ее скорости.

Изучаемые в курсе теоретических основ электротехники основные свойства и методы расчета ЭМП предполагают качественное и количественное исследование ЭМП, встречающихся в электротехнических, радиоэлектронных и биомедицинских устройствах. Для этого наиболее пригодны уравнения электродинамики в интегральной и дифференциальной формах.

Математический аппарат теории электромагнитного поля (ТЭМП) базируется на теории скалярного поля, векторном и тензорном анализе, а также дифференциальном и интегральном исчислении.

Контрольные вопросы

1. Что такое электромагнитное поле?

2. Что называют электрическим и магнитным полем?

3. На чём базируется математический аппарат теории электромагнитного поля?

§ 1.2. Физические величины, характеризующие ЭМП

Вектором напряженности электрического поля в точке Q называется вектор силы, действующей на электрически заряженную неподвижную частицу, помещенную в точку Q , если эта частица имеет единичный положительный заряд.

В соответствии с этим определением электрическая сила, действующая на точечный заряд q равна:

где E измеряется в В/м.

Магнитное поле характеризуется вектором магнитной индукции . Магнитная индукция в некоторой точке наблюдения Q - это векторная величина, модуль которой равен магнитной силе, действующей на заряженную частицу, находящуюся в точке Q , имеющую единичный заряд и движущуюся с единичной скоростью, причем векторы силы, скорости, магнитной индукции, а также заряд частицы удовлетворяют условию

.

Магнитная сила, действующая на криволинейный проводник с током может быть определена по формуле

.

На прямолинейный проводник, если он находится в однородном поле, действует следующая магнитная сила

.

Во всех последних формулах B - магнитная индукция, которая измеряется в теслах (Тл).

1 Тл - это такая магнитная индукция, при которой на прямолинейный проводник с током 1А действует магнитная сила, равная 1Н, если линии магнитной индукции направлены перпендикулярно проводнику с током, и если длина проводника равна 1м.

Кроме напряженности электрического поля и магнитной индукции в теории электромагнитного поля рассматриваются следующие векторные величины:

1) электрическая индукция D (электрическое смещение), которая измеряется в Кл/м 2 ,

Векторы ЭМП являются функциями пространства и времени:

где Q - точка наблюдения, t - момент времени.

Если точка наблюдения Q находится в вакууме, то между соответствующими парами векторных величин имеют место следующие соотношения

где - абсолютная диэлектрическая проницаемость вакуума (основная электрическая постоянная), =8,85419*10 -12 ;

Абсолютная магнитная проницаемость вакуума (основная магнитная постоянная); = 4π*10 -7 .

Контрольные вопросы

1. Что такое напряжённость электрического поля?

2. Что называют магнитной индукцией?

3. Чему равна магнитная сила, действующая на движущуюся заряженную частицу?

4. Чему равна магнитная сила, действующая на проводник с током?

5. Какими векторными величинами характеризуется электрическое поле?

6. Какими векторными величинами характеризуется магнитное поле?

§ 1.3. Источники электромагнитного поля

Источниками ЭМП являются электрические заряды, электрические диполи, движущиеся электрические заряды, электрические токи, магнитные диполи.

Понятия электрического заряда и электрического тока даны в курсе физики. Электрические токи бывают трех типов:

1. Токи проводимости.

2. Токи смещения.

3. Токи переноса.

Ток проводимости - скорость прохождения подвижных зарядов электропроводящего тела через некоторую поверхность.

Ток смещения - скорость изменения потока вектора электрического смещения через некоторую поверхность.

.

Ток переноса характеризуется следующим выражением

где v - скорость переноса тел через поверхность S ; n - вектор единичной нормали к поверхности; - линейная плотность заряда тел, пролетающих через поверхность, в направлении нормали; ρ - объемная плотность электрического заряда; ρv - плотность тока переноса.

Электрическим диполем называется пара точечных зарядов +q и - q , находящихся на расстоянии l друг от друга (рис. 1).

Точечный электрический диполь характеризуется вектором электрического дипольного момента:

Магнитным диполем называется плоский контур с электрическим током I. Магнитный диполь характеризуется вектором магнитного дипольного момента

где S - вектор площади плоской поверхности, натянутой на контур с током. Вектор S направлен перпендикулярно этой плоской поверхности, причем, если смотреть из конца вектора S , то движение по контуру в направлении, совпадающим с направлением тока, будет происходить против часовой стрелки. Это означает, что направление вектора дипольного магнитного момента связано с направлением тока по правилу правого винта.

Атомы и молекулы вещества представляют собой электрические и магнитные диполи, поэтому каждую точку вещественного типа в ЭМП можно характеризовать объемной плотностью электрического и магнитного дипольного момента:

P - электрическая поляризованность вещества:

M - намагниченность вещества:

Электрическая поляризованность вещества - это векторная величина, равная объемной плотности электрического дипольного момента в некоторой точке вещественного тела.

Намагниченность вещества - это векторная величина, равная объемной плотности магнитного дипольного момента в некоторой точке вещественного тела.

Электрическое смещение - это векторная величина, которая для любой точки наблюдения вне зависимости от того, находится ли она в вакууме или в веществе, определяется из соотношения:

(для вакуума или вещества),

(только для вакуума).

Напряженность магнитного поля - векторная величина, которая для любой точки наблюдения вне зависимости от того находится ли она в вакууме или в веществе определяется из соотношения:

,

где напряженность магнитного поля измеряется в А/м.

Кроме поляризованности и намагниченности существуют другие объемно-распределенные источники ЭМП:

- объемная плотность электрического заряда ; ,

где объемная плотность электрического заряда измеряется в Кл/м 3 ;

- вектор плотности электрического тока , нормальная составляющая которого равна

В более общем случае ток, протекающий через незамкнутую поверхность S , равен потоку вектора плотности тока через эту поверхность:

где вектор плотности электрического тока измеряется в А/м 2 .

Контрольные вопросы

1. Что является источниками электромагнитного поля?

2. Что такое ток проводимости?

3. Что такое ток смещения?

4. Что такое ток переноса?

5. Что такое электрический диполь и электрический дипольный момент?

6. Что такое магнитный диполь и магнитный дипольный момент?

7. Что называют электрической поляризованностью и намагниченностью вещества?

8. Что называется электрическим смещением?

9. Что называется напряжённостью магнитного поля?

10. Что такое объёмная плотность электрического заряда и плотность тока?

Пример применения MATLAB

Задача .

Дано : Контур с электрическим током I в пространстве представляет собой периметр треугольника, декартовы координаты вершин которого заданы: x 1 , x 2 , x 3 , y 1 , y 2 , y 3 , z 1 , z 2 , z 3 . Здесь нижние индексы - номера вершин. Вершины пронумерованы в направлении протекания электрического тока.

Требуется составить функцию MATLAB, вычисляющую вектор дипольного магнитного момента контура. При составлении m-файла можно предполагать, что пространственные координаты измеряются в метрах, а ток - в амперах. Допускается произвольная организация входных и выходных параметров.

Решение

% m_dip_moment - вычисление магнитного дипольного момента треугольного контура с током в пространстве

% pm = m_dip_moment(tok,nodes)

% ВХОДНЫЕ ПАРАМЕТРЫ

% tok - ток в контуре;

% nodes - квадратная матрица вида ." , в каждой строке которой записаны координаты соответствующей вершины.

% ВЫХОДНОЙ ПАРАМЕТР

% pm - матрица-строка декартовых компонентов вектора магнитного дипольного момента.

function pm = m_dip_moment(tok,nodes);

pm=tok*)]) det()]) det()])]/2;

% В последнем операторе вектор площади треугольника умножается на ток

>> nodes=10*rand(3)

9.5013 4.8598 4.5647

2.3114 8.913 0.18504

6.0684 7.621 8.2141

>> pm=m_dip_moment(1,nodes)

13.442 20.637 -2.9692

В данном случае получилось P M = (13.442*1 x + 20.637*1 y - 2.9692*1 z ) А*м 2 , если ток в контуре равен 1 А.

§ 1.4. Пространственные дифференциальные операторы в теории электромагнитного поля

Градиентом скалярного поля Φ(Q ) = Φ(x, y, z ) называется векторное поле, определяемое формулой:

,

где V 1 - область, содержащая точку Q ; S 1 - замкнутая поверхность, ограничивающая область V 1 , Q 1 - точка, принадлежащая поверхности S 1 ; δ - наибольшее расстояние от точки Q до точек на поверхности S 1 (max| Q Q 1 |).

Дивергенцией векторного поля F (Q )=F (x, y, z ) называется скалярное поле, определяемое по формуле:

Ротором (вихрем) векторного поля F (Q )=F (x, y, z ) называется векторное поле, определяемое по формуле:

rot F =

Оператор набла - это векторный дифференциальный оператор, который в декартовых координатах определяется формулой:

Представим grad, div и rot через оператор набла:

Запишем эти операторы в декартовых координатах:

; ;

Оператор Лапласа в декартовых координатах определяется формулой:

Дифференциальные операторы второго порядка:

Интегральные теоремы

Теорема о градиенте ;

Теорема о дивергенции

Теорема о роторе

В теории ЭМП применяется также ещё одна из интегральных теорем:

.

Контрольные вопросы

1. Что называется градиентом скалярного поля?

2. Что называется дивергенцией векторного поля?

3. Что называется ротором векторного поля?

4. Что такое оператор набла и как через него выражаются дифференциальные операторы первого порядка?

5. Какие интегральные теоремы справедливы для скалярных и векторных полей?

Пример применения MATLAB

Задача .

Дано : В объёме тетраэдра скалярное и векторное поля изменяются по линейному закону. Координаты вершин тетраэдра заданы матрицей вида [x 1 , y 1 , z 1 ; x 2 , y 2 , z 2 ; x 3 , y 3 , z 3 ; x 4 , y 4 , z 4 ]. Значения скалярного поля в вершинах заданы матрицей [Ф 1 ; Ф 2 ; Ф 3 ; Ф 4 ]. Декартовы компоненты векторного поля в вершинах заданы матрицей [F 1 x , F 1y , F 1z ; F 2x , F 2y , F 2z ; F 3x , F 3y , F 3z ; F 4x , F 4y , F 4z ].

Определить в объёме тетраэдра градиент скалярного поля, а также дивергенцию и ротор векторного поля. Составить для этого функцию MATLAB.

Решение . Ниже приведён текст m-функции.

% grad_div_rot - Вычисление градиента, дивергенции и ротора... в объёме тетраэдра

% =grad_div_rot(nodes,scalar,vector)

% ВХОДНЫЕ ПАРАМЕТРЫ

% nodes - матрица координат вершин тетраэдра:

% строкам соответствуют вершины, столбцам - координаты;

% scalar - столбцовая матрица значений скалярного поля в вершинах;

% vector - матрица компонентов векторного поля в вершинах:

% ВЫХОДНЫЕ ПАРАМЕТРЫ

% grad - матрица-строка декартовых компонентов градиента скалярного поля;

% div - значение дивергенции векторного поля в объёме тетраэдра;

% rot - матрица-строка декартовых компонентов ротора векторного поля.

% При вычислениях предполагается, что в объёме тетраэдра

% векторное и скалярное поля изменяются в пространстве по линейному закону.

function =grad_div_rot(nodes,scalar,vector);

a=inv(); % Матрица коэффициентов линейной интерполяции

grad=(a(2:end,:)*scalar)."; % Компоненты градиента скалярного поля

div=*vector(:); % Дивергенция векторного поля

rot=sum(cross(a(2:end,:),vector."),2).";

Пример запуска разработанной m-функции:

>> nodes=10*rand(4,3)

3.5287 2.0277 1.9881

8.1317 1.9872 0.15274

0.098613 6.0379 7.4679

1.3889 2.7219 4.451

>> scalar=rand(4,1)

>> vector=rand(4,3)

0.52515 0.01964 0.50281

0.20265 0.68128 0.70947

0.67214 0.37948 0.42889

0.83812 0.8318 0.30462

>> =grad_div_rot(nodes,scalar,vector)

0.16983 -0.03922 -0.17125

0.91808 0.20057 0.78844

Если предположить, что пространственные координаты измеряются в метрах, а векторное и скалярное поля - безразмерные, то в данном примере получилось:

grad Ф = (-0.16983*1 x - 0.03922*1 y - 0.17125*1 z ) м -1 ;

div F = -1.0112 м -1 ;

rot F = (-0.91808*1 x + 0.20057*1 y + 0.78844*1 z ) м -1 .

§ 1.5. Основные законы теории электромагнитного поля

Уравнения ЭМП в интегральной форме

Закон полного тока:

или

Циркуляция вектора напряженности магнитного поля вдоль контура l равна полному электрическому току, протекающему через поверхность S , натянутую на контур l , если направление тока образуют с направлением обхода контура правовинтовую систему.

Закон электромагнитной индукции:

,

где E c - напряженность стороннего электрического поля.

ЭДС электромагнитной индукции e и в контуре l равна скорости изменения магнитного потока через поверхность S , натянутую на контур l , причем направление скорости изменения магнитного потока образует с направлением e и левовинтовую систему.

Теорема Гаусса в интегральной форме:

Поток вектора электрического смещения через замкнутую поверхность S равен сумме свободных электрических зарядов в объёме, ограниченном поверхностью S .

Закон непрерывности линий магнитной индукции:

Магнитный поток через любую замкнутую поверхность равен нулю.

Непосредственное применение уравнений в интегральной форме позволяет производить расчет простейших электромагнитных полей. Для расчета электромагнитных полей более сложной формы применяют уравнения в дифференциальной форме. Эти уравнения называются уравнениями Максвелла.

Уравнения Максвелла для неподвижных сред

Эти уравнения непосредственно следуют из соответствующих уравнений в интегральной форме и из математических определений пространственных дифференциальных операторов.

Закон полного тока в дифференциальной форме:

,

Плотность полного электрического тока,

Плотность стороннего электрического тока,

Плотность тока проводимости,

Плотность тока смещения: ,

Плотность тока переноса: .

Это означает, что электрический ток является вихревым источником векторного поля напряженности магнитного поля.

Закон электромагнитной индукции в дифференциальной форме:

Это означает, что переменное магнитное поле является вихревым источником для пространственного распределения вектора напряженности электрического поля.

Уравнение непрерывности линий магнитной индукции:

Это означает, что поле вектора магнитной индукции не имеет истоков, т.е. в природе не существует магнитных зарядов (магнитных монополей).

Теорема Гаусса в дифференциальной форме:

Это означает, что истоками векторного поля электрического смещения являются электрические заряды.

Для обеспечения единственности решения задачи анализа ЭМП необходимо дополнить уравнения Максвелла уравнениями материальной связи между векторами E и D , а также B и H .

Соотношения между векторами поля и электрофизическими свойствами среды

Известно, что

(1)

Все диэлектрики поляризуются под действием электрического поля. Все магнетики намагничиваются под действием магнитного поля. Статические диэлектрические свойства вещества могут быть полностью описаны функциональной зависимостью вектора поляризованности P от вектора напряженности электрического поля E (P =P (E )). Статические магнитные свойства вещества могут быть полностью описаны функциональной зависимостью вектора намагниченности M от вектора напряженности магнитного поля H (M =M (H )). В общем случае такие зависимости носят неоднозначный (гистерезисный) характер. Это означает, что вектор поляризованности или намагниченности в точке Q определяется не только значением вектора E или H в этой точке, но и предысторией изменения вектора E или H в этой точке. Экспериментально исследовать и моделировать эти зависимости чрезвычайно сложно. Поэтому на практике часто предполагают, что векторы P и E , а также M и H коллинеарны, и электрофизические свойства вещества описывают скалярными гистерезисными функциями (|P |=|P |(|E |), |M |=|M |(|H |). Если гистерезисными характеристиками вышеназванных функций можно пренебречь, то электрофизические свойства описывают однозначными функциями P =P (E ), M =M (H ).

Во многих случаях эти функции приближенно можно считать линейными, т.е.

Тогда с учетом соотношения (1) можно записать следующее

, (4)

Соответственно относительная диэлектрическая и магнитная проницаемости вещества:

Абсолютная диэлектрическая проницаемость вещества:

Абсолютная магнитная проницаемость вещества:

Соотношения (2), (3), (4) характеризуют диэлектрические и магнитные свойства вещества. Электропроводящие свойства вещества могут быть описаны законом Ома в дифференциальной форме

где - удельная электрическая проводимость вещества, измеряемая в См/м.

В более общем случае зависимость между плотностью тока проводимости и вектором напряженности электрического поля носит нелинейный векторно-гистерезисный характер.

Энергия электромагнитного поля

Объемная плотность энергии электрического поля равна

,

где W э измеряется в Дж/м 3 .

Объемная плотность энергии магнитного поля равна

,

где W м измеряется в Дж/м 3 .

Объемная плотность энергии электромагнитного поля равна

В случае линейных электрических и магнитных свойств вещества объемная плотность энергии ЭМП равна

Это выражение справедливо для мгновенных значений удельной энергии и векторов ЭМП.

Удельная мощность тепловых потерь от токов проводимости

Удельная мощность сторонних источников

Контрольные вопросы

1. Как формулируется закон полного тока в интегральной форме?

2. Как формулируется закон электромагнитной индукции в интегральной форме?

3. Как формулируется теорема Гаусса и закон непрерывности магнитного потока в интегральной форме?

4. Как формулируется закон полного тока в дифференциальной форме?

5. Как формулируется закон электромагнитной индукции в дифференциальной форме?

6. Как формулируется теорема Гаусса и закон непрерывности линий магнитной индукции в интегральной форме?

7. Какими соотношениями описываются электрофизические свойства вещества?

8. Как выражается энергия электромагнитного поля через векторные величины, его определяющие?

9. Как определяется удельная мощность тепловых потерь и удельная мощность сторонних источников?

Примеры применения MATLAB

Задача 1 .

Дано : Внутри объёма тетраэдра магнитная индукция и намагниченность вещества изменяются по линейному закону. Координаты вершин тетраэдра заданы, значения векторов магнитной индукции и намагниченности вещества в вершинах также заданы.

Вычислить плотность электрического тока в объёме тетраэдра, используя m-функцию, составленную при решении задачи в предыдущем параграфе. Вычисление выполнить в командном окне MATLAB, предполагая, что пространственные координаты измеряются в миллиметрах, магнитная индукция - в теслах, напряжённость магнитного поля и намагниченность - в кА/м.

Решение .

Зададим исходные данные в формате, совместимом с m-функцией grad_div_rot:

>> nodes=5*rand(4,3)

0.94827 2.7084 4.3001

0.96716 0.75436 4.2683

3.4111 3.4895 2.9678

1.5138 1.8919 2.4828

>> B=rand(4,3)*2.6-1.3

1.0394 0.41659 0.088605

0.83624 -0.41088 0.59049

0.37677 -0.54671 -0.49585

0.82673 -0.4129 0.88009

>> mu0=4e-4*pi % абcолютная магнитная проницаемоcть вакуума, мкГн/мм

>> M=rand(4,3)*1800-900

122.53 -99.216 822.32

233.26 350.22 40.663

364.93 218.36 684.26

83.828 530.68 -588.68

>> =grad_div_rot(nodes,ones(4,1),B/mu0-M)

0 -3.0358e-017 0

914.2 527.76 -340.67

В данном примере вектор полной плотности тока в рассматриваемом объёме получился равным (-914.2*1 x + 527.76*1 y - 340.67*1 z ) А/мм 2 . Чтобы определить модуль плотности тока, выполним следующий оператор:

>> cur_d=sqrt(cur_dens*cur_dens.")

Вычисленное значение плотности тока не может быть получено в сильно намагниченных средах в реальных технических устройствах. Данный пример - чисто учебный. А теперь проверим корректность задания распределения магнитной индукции в объёме тетраэдра. Для этого выполним следующий оператор:

>> =grad_div_rot(nodes,ones(4,1),B)

0 -3.0358e-017 0

0.38115 0.37114 -0.55567

Здесь мы получили значение div B = -0.34415 Тл/мм, чего не может быть в соответствии с законом непрерывности линий магнитной индукции в дифференциальной форме. Из этого следует, что распределение магнитной индукции в объёме тетраэдра задано некорректно.

Задача 2 .

Пусть тетраэдр, координаты вершин которого заданы, находится в воздухе (единицы измерения - метры). Пусть заданы значения вектора напряжённости электрического поля в его вершинах (единицы измерения - кВ/м).

Требуется вычислить объёмную плотность электрического заряда внутри тетраэдра.

Решение можно выполнить аналогично:

>> nodes=3*rand(4,3)

2.9392 2.2119 0.59741

0.81434 0.40956 0.89617

0.75699 0.03527 1.9843

2.6272 2.6817 0.85323

>> eps0=8.854e-3 % абсолютная диэлектрическая проницаемость вакуума, нФ/м

>> E=20*rand(4,3)

9.3845 8.4699 4.519

1.2956 10.31 11.596

19.767 6.679 15.207

11.656 8.6581 10.596

>> =grad_div_rot(nodes,ones(4,1),E*eps0)

0.076467 0.21709 -0.015323

В данном примере объёмная плотность заряда получилась равной 0.10685 мкКл/м 3 .

§ 1.6. Граничные условия для векторов ЭМП.
Закон сохранения заряда. Теорема Умова-Пойнтинга

или

Здесь обозначено: H 1 - вектор напряжённости магнитного поля на поверхности раздела сред в среде №1; H 2 - то же в среде №2; H 1t - тангенциальная (касательная) составляющая вектора напряжённости магнитного поля на поверхности раздела сред в среде №1; H 2t - то же в среде №2; E 1 вектор полной напряжённости электрического поля на поверхности раздела сред в среде №1; E 2 - то же в среде №2; E 1 c - сторонняя составляющая вектора напряжённости электрического поля на поверхности раздела сред в среде №1; E 2с - то же в среде №2; E 1t - тангенциальная составляющая вектора напряжённости электрического поля на поверхности раздела сред в среде №1; E 2t - то же в среде №2; E t - тангенциальная сторонняя составляющая вектора напряжённости электрического поля на поверхности раздела сред в среде №1; E 2t - то же в среде №2; B 1 - вектор магнитной индукции на поверхности раздела сред в среде №1; B 2 - то же в среде №2; B 1n - нормальная составляющая вектора магнитной индукции на поверхности раздела сред в среде №1; B 2n - то же в среде №2; D 1 - вектор электрического смещения на поверхности раздела сред в среде №1; D 2 - то же в среде №2; D 1n - нормальная составляющая вектора электрического смещения на поверхности раздела сред в среде №1; D 2n - то же в среде №2; σ - поверхностная плотность электрического заряда на границе раздела сред, измеряемая в Кл/м 2 .

Закон сохранения заряда

Если отсутствуют сторонние источники тока, то

,

а в общем случае , т. е. вектор плотности полного тока не имеет истоков, т. е. линии полного тока всегда замкнуты

Теорема Умова-Пойнтинга

Объёмная плотность мощности, потребляемой материальной точкой в ЭМП, равна

В соответствии с тождеством (1)

Это и есть уравнение баланса мощностей для объема V . В общем случае в соответствии с равенством (3) электромагнитная мощность, генерируемая источниками внутри объема V , идет на тепловые потери, на накопление энергии ЭМП и на излучение в окружающее пространство через замкнутую поверхность, ограничивающую этот объем.

Подынтегральное выражение в интеграле (2) называется вектором Пойнтинга:

,

где П измеряется в Вт/м 2 .

Этот вектор равен плотности потока электромагнитной мощности в некоторой точке наблюдения. Равенство (3) - есть математическое выражение теоремы Умова-Пойнтинга.

Электромагнитная мощность, излучаемая областью V в окружающее пространство равна потоку вектора Пойнтинга через замкнутую поверхность S , ограничивающую область V .

Контрольные вопросы

1. Какими выражениями описываются граничные условия для векторов электромагнитного поля на поверхностях раздела сред?

2. Как формулируется закон сохранения заряда в дифференциальной форме?

3. Как формулируется закон сохранения заряда в интегральной форме?

4. Какими выражениями описываются граничные условия для плотности тока на поверхностях раздела сред?

5. Чему равна объемная плотность мощности, потребляемой материальной точкой в электромагнитном поле?

6. Как записывается уравнение баланса электромагнитной мощности для некоторого объёма?

7. Что такое вектор Пойнтинга?

8. Как формулируется теорема Умова-Пойнтинга?

Пример применения MATLAB

Задача .

Дано : Имеется треугольная поверхность в пространстве. Координаты вершин заданы. Значения векторов напряжённости электрического и магнитного поля в вершинах также заданы. Сторонняя составляющая напряжённости электрического поля равна нулю.

Требуется вычислить электромагнитную мощность, проходящую через эту треугольную поверхность. Составить функцию MATLAB, выполняющую это вычисление. При вычислениях считать, что вектор положительной нормали направлен так, что если смотреть из его конца, то движение в порядке возрастания номеров вершин будет происходить против часовой стрелки.

Решение . Ниже приведён текст m-функции.

% em_power_tri - вычисление электромагнитной мощности, проходящей через

% треугольную поверхность в пространстве

% P=em_power_tri(nodes,E,H)

% ВХОДНЫЕ ПАРАМЕТРЫ

% nodes - квадратная матрица вида ." ,

% в каждой строке которой записаны координаты соответствующей вершины.

% E - матрица компонентов вектора напряжённости электрического поля в вершинах:

% строкам соответствуют вершины, столбцам - декартовы компоненты.

% H - матрица компонентов вектора напряжённости магнитного поля в вершинах.

% ВЫХОДНОЙ ПАРАМЕТР

% P - электромагнитная мощность, проходящая через треугольник

% При вычислениях предполагается, что на треугольнике

% векторы напряжённости поля изменяются в пространстве по линейному закону.

function P=em_power_tri(nodes,E,H);

% Вычисляем вектор двойной площади треугольника

S=)]) det()]) det()])];

P=sum(cross(E,(ones(3,3)+eye(3))*H,2))*S."/24;

Пример запуска разработанной m-функции:

>> nodes=2*rand(3,3)

0.90151 0.5462 0.4647

1.4318 0.50954 1.6097

1.7857 1.7312 1.8168

>> E=2*rand(3,3)

0.46379 0.15677 1.6877

0.47863 1.2816 0.3478

0.099509 0.38177 0.34159

>> H=2*rand(3,3)

1.9886 0.62843 1.1831

0.87958 0.73016 0.23949

0.6801 0.78648 0.076258

>> P=em_power_tri(nodes,E,H)

Если предположить, что пространственные координаты измеряются в метрах, вектор напряжённости электрического поля - в вольтах на метр, вектор напряжённости магнитного поля - в амперах на метр, то в данном примере электромагнитная мощность, проходящая через треугольник, получилась равной 0.18221 Вт.


Электричество вокруг нас

Электромагнитное поле (определение из БСЭ) — это особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами. Исходя из этого определения не понятно, что является первичным - существование заряженных частиц или же наличие поля. Быть может только благодаря наличию электромагнитного поля частицы могут получать заряд. Также как и в истории с курицей и яйцом. Суть в том, что заряженные частицы и электромагнитное поле неотделимы друг от друга и друг без друга существовать не могут. Поэтому определение не даёт нам с вами возможности понять суть явления электромагнитного поля и единственное, что следует запомнить, что это особая форма материи ! Теория электромагнитного поля была разработана Джеймсом Максвеллом в 1865 г.

Что такое электромагнитное поле? Можно представить себе, что мы живём в электромагнитной Вселенной, которая вся целиком и полностью пронизана электромагнитным полем, а различные частицы и вещества в зависимости от своего строения и свойств под воздействием электромагнитного поля приобретают положительный или отрицательный заряд, накапливают его, или же остаются электронейтральными. Соответственно электромагнитные поля можно разделить на два вида: статическое , то есть излучаемое заряженными телами (частицами) и неотъемлемое от них, и динамическое , распространяющееся в пространстве, будучи оторванным от источника, излучившего его. Динамическое электромагнитное поле в физике представляется в виде двух взаимноперпендикулярных волн: электрической (Е) и магнитной (Н).

Тот факт, что электрическое поле порождается переменным магнитным полем,а магнитное поле - переменным электрическим, приводит к тому, что электрические и магнитные переменные поля не существуют по-отдельности друг от друга. Электромагнитное поле неподвижных или равномерно движущихся заряженных частиц напрямую связано с самими частицами. При ускоренном движении этих заряженных частиц электромагнитное поле "отрывается" от них и существует независимо в форме электромагнитных волн, не исчезая с устранением источника.

Источники электромагнитных полей

Природные (естественные) источники электромагнитных полей

Природные (естественные) источники ЭМП делят на следующие группы:

  • электрическое и магнитное поле Земли;
  • радио излучение Солнца и галактик (реликтовое излучение, равномерно распространенное во Вселенной);
  • атмосферное электричество;
  • биологический электромагнитный фон.
  • Магнитное поле Земли. Величина геомагнитного поля Земли меняется по земной поверхности от 35 мкТл на экваторе до 65 мкТл вблизи полюсов.

    Электрическое поле Земли направлено нормально к земной поверхности, заряженной отрицательно относительно верхних слоев атмосферы. Напряжённость электрического поля у поверхности Земли составляет 120…130 В/м и убывает с высотой примерно экспоненциально. Годовые изменения ЭП сходны по характеру на всей Земле: максимальная напряжённость 150…250 В/м в январе-феврале и минимальная 100…120 В/м в июне-июле.

    Атмосферное электричество – это электрические явления в земной атмосфере. В воздухе (ссылка) всегда имеются положительные и отрицательные электрические заряды – ионы, возникающие под действием радиоактивных веществ, космических лучей и ультрафиолетового излучения Солнца. Земной шар заряжен отрицательно; между ним и атмосферой имеется большая разность потенциалов. Напряжённость электрастатического поля резко возрастает во время гроз. Частотный диапазон атмосферных разрядов лежит между 100 Гц и 30 МГц.

    Внеземные источники включают излучения за пределами атмосферы Земли.

    Биологический электромагнитный фон. Биологические объекты, как и другие физические тела, при температуре выше абсолютного нуля излучают ЭМП в диапазоне 10 кГц – 100 ГГц. Это объясняется хаотическим движением зарядов – ионов, в теле человека. Плотность мощности такого излучения у человека составляет 10 мВт/см2, что для взрослого даёт суммарную мощность в 100 Вт. Человеческое тело также излучает ЭМП с частотой 300 ГГц с плотностью мощности около 0,003 Вт/м2.

    Антропогенные источники электромагнитных полей

    Антропогенные источники делятся на 2 группы:

    Источники низкочастотных излучений (0 - 3 кГц)

    Эта группа включает в себя все системы производства, передачи и распределения электроэнергии (линии электропередачи, трансформаторные подстанции, электростанции, различные кабельные системы), домашнюю и офисную электро- и электронную технику, в том числе и мониторы ПК, транспорт на электроприводе, ж/д транспорт и его инфраструктуру, а также метро, троллейбусный и трамвайный транспорт.

    Уже сегодня электромагнитное поле на 18-32% территории городов формируется в результате автомобильного движения. Электромагнитные волны, возникающие при движении транспорта, создают помехи теле- и радиоприему, а также могут оказывать вредное воздействие на организм человека.

    Источники высокочастотных излучений (от 3 кГц до 300 ГГц)

    К этой группе относятся функциональные передатчики - источники электромагнитного поля в целях передачи или получения информации. Это коммерческие передатчики (радио, телевидение), радиотелефоны (авто-, радиотелефоны, радио СВ, любительские радиопередатчики, производственные радиотелефоны), направленная радиосвязь (спутниковая радиосвязь, наземные релейные станции), навигация (воздушное сообщение, судоходство, радиоточка), локаторы (воздушное сообщение, судоходство, транспортные локаторы, контроль за воздушным транспортом). Сюда же относится различное технологическое оборудование, использующее СВЧ-излучение, переменные (50 Гц - 1 МГц) и импульсные поля, бытовое оборудование (СВЧ-печи), средства визуального отображения информации на электронно-лучевых трубках (мониторы ПК, телевизоры и пр.). Для научных исследований в медицине применяют токи ультравысокой частоты. Возникающие при использовании таких токов электромагнитные поля представляют определенную профессиональную вредность, поэтому необходимо принимать меры защиты от их воздействия на организм.

    Основными техногенными источниками являются:

  • бытовые телеприёмники, СВЧ-печи, радиотелефоны и т.п. устройства;
  • электростанции, энергосиловые установки и трансформаторные подстанции;
  • широкоразветвлённые электрические и кабельные сети;
  • радиолокационные, радио- и телепередающие станции, ретрансляторы;
  • компьютеры и видеомониторы;
  • воздушные линии электропередач (ЛЭП).
  • Особенностью облучения в городских условиях является воздействие на население как суммарного электромагнитного фона (интегральный параметр), так и сильных ЭМП от отдельных источников (дифференциальный параметр).