Тайны особой субстанции. Коллекция документов КСЭ по изучению Тунгусского метеорита


Космическая пыль

частицы вещества в межзвёздном и межпланетном пространстве. Поглощающие свет сгущения К. п. видны как тёмные пятна на фотографиях Млечного Пути. Ослабление света вследствие влияния К. п. - т. н. межзвёздное поглощение, или экстинкция, - неодинаково для электромагнитных волн разной длины λ , вследствие чего наблюдается покраснение звёзд. В видимой области экстинкция приблизительно пропорциональна λ -1 , в близкой же ультрафиолетовой области почти не зависит от длины волны, но около 1400 Å имеется дополнительный максимум поглощения. Большая часть экстинкции объясняется рассеянием света, а не его поглощением. Это следует из наблюдений содержащих К. п. отражательных туманностей, видимых вокруг звёзд спектрального класса B и некоторых др. звёзд, достаточно ярких, чтобы осветить пыль. Сопоставление яркости туманностей и освещающих их звёзд показывает, что Альбедо пыли велико. Наблюдаемые экстинкция и альбедо приводят к заключению, что К. п. состоит из диэлектрических частиц с примесью металлов при размере немного меньше 1 мкм. Ультрафиолетовый максимум экстинкции может быть объяснён тем, что внутри пылинок имеются графитовые чешуйки размером около 0,05 × 0,05 × 0,01 мкм. Из-за дифракции света на частице, размеры которой сравнимы с длиной волны, свет рассеивается преимущественно вперёд. Межзвёздное поглощение часто приводит к поляризации света, которая объясняется анизотропией свойств пылинок (вытянутой формой у диэлектрических частиц или анизотропией проводимости графита) и их упорядоченной ориентацией в пространстве. Последняя объясняется действием слабого межзвёздного поля, которое ориентирует пылинки их длинной осью перпендикулярно силовой линии. Т. о., наблюдая поляризованный свет далёких небесных светил, можно судить об ориентации поля в межзвёздном пространстве.

Относительное количество пыли определяется из величины среднего поглощения света в плоскости Галактики - от 0,5 до нескольких звёздных величин на 1 килоПарсек в визуальной области спектра. Масса пыли составляет около 1% массы межзвёздного вещества. Пыль, как и газ, распределена неоднородно, образуя облака и более плотные образования - Глобулы . В глобулах пыль является охлаждающим фактором, экранируя свет звёзд и излучая в инфракрасном диапазоне энергию, получаемую пылинкой от неупругих столкновений с атомами газа. На поверхности пыли происходит соединение атомов в молекулы: пыль является катализатором.

С. Б. Пикельнер.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Космическая пыль" в других словарях:

    Частицы конденсированного вещества в межзвездном и межпланетном пространстве. По современным представлениям, космическая пыль состоит из частиц размером ок. 1 мкм с сердцевиной из графита или силиката. В Галактике космическая пыль образует… … Большой Энциклопедический словарь

    КОСМИЧЕСКАЯ ПЫЛЬ, очень мелкие частицы твердого вещества, находящиеся в любой части Вселенной, в том числе, метеоритная пыль и межзвездное вещество, способное поглощать звездный свет и образующее темные ТУМАННОСТИ в галактиках. Сферические… … Научно-технический энциклопедический словарь

    КОСМИЧЕСКАЯ ПЫЛЬ - метеорная пыль, а также мельчайшие частицы вещества, образующие пылевые и др. туманности в межзвёздном пространстве … Большая политехническая энциклопедия

    космическая пыль - Очень маленькие частицы твердого вещества, присутствующие в мировом пространстве и выпадающие на Землю … Словарь по географии

    Частицы конденсированного вещества в межзвёздном и межпланетном пространстве. По современной представлениям, космическая пыль состоит из частиц размером около 1 мкм с сердцевиной из графита или силиката. В Галактике космическая пыль образует… … Энциклопедический словарь

    Образуется в космосе частицами размером от нескольких молекул до 0,1 мм. 40 килотонн космической пыли каждый год оседает на планете Земля. Космическую пыль можно также различать по её астрономическому положению, например: межгалактическая пыль,… … Википедия

    космическая пыль - kosminės dulkės statusas T sritis fizika atitikmenys: angl. cosmic dust; interstellar dust; space dust vok. interstellarer Staub, m; kosmische Staubteilchen, m rus. космическая пыль, f; межзвёздная пыль, f pranc. poussière cosmique, f; poussière… … Fizikos terminų žodynas

    космическая пыль - kosminės dulkės statusas T sritis ekologija ir aplinkotyra apibrėžtis Atmosferoje susidarančios meteorinės dulkės. atitikmenys: angl. cosmic dust vok. kosmischer Staub, m rus. космическая пыль, f … Ekologijos terminų aiškinamasis žodynas

    Частицы конденсированного в ва в межзвёздном и межпланетном пространстве. По совр. представлениям, К. п. состоит из частиц размером ок. 1 мкм с сердцевиной из графита или силиката. В Галактике К. п. образует сгущения облака и глобулы. Вызывает… … Естествознание. Энциклопедический словарь

    Частицы конденсированного вещества в межзвёздном и межпланетном пространстве. Состоит из частиц размером около 1 мкм с сердцевиной из графита или силиката, в Галактике образует облака, которые вызывают ослабление света, испускаемого звёздами и… … Астрономический словарь

Книги

  • Детям о космосе и космонавтах , Г. Н. Элькин. Эта книга знакомит с удивительным миром космоса. На ее страницах ребенок найдет ответы на многие вопросы: что такое звезды, черные дыры, откуда появляются кометы, астероиды, из чего состоит…

Пыль и газ - это субстанции, которые широко распространены во Вселенной. Есть межзвездная пыль, которая входит в межзвездные облака, и каждый человек, который может наблюдать Млечный Путь, может увидеть эти темные облака. Они закрывают части Млечного Пути. Напомню, что Млечный Путь - это плоскость нашей Галактики. В ясную ночь можно увидеть такую светлую полосу, которая разделяет звездное небо на две части, - это и есть Млечный Путь.

Если внимательно присмотреться, можно увидеть, что на Млечном Пути есть темные пятна. Эти пятна и есть плотные межзвездные облака пыли и газа. Если говорить конкретно о пыли, то есть межзвездная пыль, а есть пыль, которая связана с Солнечной системой. Состав межпланетной пыли несколько отличается от межзвездной пыли. Межпланетная пыль близка по своему составу метеоритам, которые падают на Землю. Метеориты - это, как считается, фрагменты астероидов. Таким образом, межпланетная пыль возникла в результате высокоскоростных столкновений астероидоподобных тел между собой, при падении одних тел на другие образуются мелкие частицы, которые вследствие слабых гравитационных полей астероидов просто разлетаются. Они формируют сгущения или облака, которые находятся в пределах Солнечной системы.

Пыль считается важным классом относительно мелких объектов Солнечной системы, поскольку она постоянно падает или оседает на поверхность Земли. Если вы проанализируете эту пыль, то наверняка найдете микрочастицы, которые отличаются от земных горных пород и имеют космическое происхождение. Мелкие частицы пыли падают на Землю по-другому, совсем не так, как более крупные тела - метеориты и метеороиды. Мелкие частицы достаточно быстро тормозятся и теряют энергию. Если они могли в космическом пространстве иметь скорость до нескольких километров в секунду и даже больше, то в земной атмосфере они быстро теряют свою скорость и сильно не нагреваются, то есть сохраняют свою форму. У мелких частиц соотношение объема вещества и поверхности гораздо выше, чем у крупных тел, поэтому потеря тепловой энергии происходит очень эффективно. Далее происходит медленное оседание таких частиц на поверхность Земли.

Здесь проявляется возможность доставки предбиологических и биологических структур на поверхность Земли. Эта идея называется гипотезой панспермии - идея переноса разных космических тел с помощью пыли. Эта гипотеза по-прежнему активно обсуждается. Если раньше она подвергалась сомнению, то в последнее время появились новые результаты, указывающие на возникновение примитивной жизни на других телах Солнечной системы.

После ряда безуспешных попыток обнаружить примитивную жизнь на Марсе возрос интерес к спутникам Сатурна и Юпитера, и, в частности, это ближайший спутник Юпитера Энцелад. Он представляет собой тело с внутренним водным океаном, он постоянно подвергается деформациям. Это тело считается наиболее вероятным объектом, на котором существует примитивная внеземная жизнь. Вторым объектом по степени вероятности рассматривается Европа, ледяной галилеев спутник Юпитера.

Поскольку такие интересные объекты есть и в Солнечной системе, и за ее пределами, я бы отметил изучение в последнее время экзопланет как наземными наблюдательными методами, так и с помощью космических аппаратов. В качестве примера приведу космический аппарат «Кеплер».

Статистические оценки показывают, что только в нашей Галактике может существовать несколько десятков миллиардов экзопланет, подобных Земле. После установления таких новых наблюдательных результатов возможность внеземного возникновения жизни не подвергается сомнению. Интерес к гипотезе о панспермии привел к тому, что она рассматривается на серьезном уровне.

Межпланетная пыль также тщательно изучается, но все-таки получить какие-то образцы межпланетной пыли достаточно сложно. Для ее сбора необходимы специальные высотные самолеты, которые могут улавливать пылевые частицы в земной атмосфере, поскольку идентифицировать пылевые частицы космического происхождения на поверхности Земли довольно сложная задача. Частицы даже при таком медленном падении деформируются, и бактерии при таких температурах не выживают.

Необходимо объективно анализировать состав наиболее интересных пылевых частиц, которые включают летучие соединения вроде полиароматических углеводородов и других сложных соединений. Для того чтобы достаточно уверенно определить состав таких соединений и их наличие в частицах, нужны высотные эксперименты с помощью самолетов или воздушных шаров. Приборы, установленные на них, могут уловить эти частицы, и их анализируют уже в лабораторных условиях. Для этого нужны чистые лабораторные условия, в которых могут быть проведены достаточно сложные исследования.

Из книги «Письма Махатм» известно, что еще в конце 19-го века Махатмы дали понять, что причина изменения климата кроется в изменении количества космической пыли в верхних слоях атмосферы. Космическая пыль присутствует в космическом пространстве повсюду, но есть области с повышенным содержанием пыли и есть с меньшим. Солнечная система в своем движении пересекает и те и другие, и это отражается на климате Земли. Но как это происходит, каков механизм воздействия этой пыли на климат?

В данном сообщении обращается внимание на пылевой хвост, но снимок также хорошо демонстрирует реальные размеры пылевой «шубы» – она просто огромна.

Зная, что диаметр Земли равен 12 тыс. км., можно сказать, что толщина её составляет в среднем не менее 2 000 км. Эта «шуба» притянута Землей и напрямую воздействует на атмосферу, сжимая её. Как и было сказано в ответе: «… прямое воздействие последней на внезапные изменения температуры …» – действительно прямое в настоящем смысле этого слова. В случае уменьшения массы космической пыли в этой «шубе», когда Земля проходит космическое пространство с меньшей концентрацией космической пыли, сила сжатия уменьшается и происходит расширение атмосферы, сопровождающееся её охлаждением. Именно это подразумевалось в словах ответа: «…что ледниковые периоды, также как и периоды, когда температура подобна «каменноугольному веку», происходят от уменьшения и увеличения или, скорее, расширения нашей атмосферы, расширения, которое само обязано тому же метеорному присутствию», т.е. обязано меньшему присутствию космической пыли в этой «шубе».

Другой яркой иллюстрацией существования этой наэлектризованной газопылевой «шубы», могут служить уже известные всем электрические разряды в верхней атмосфере, идущие от грозовых облаков в стратосферу и выше. Область этих разрядов занимает высоту от верхней границы грозовых облаков, откуда берут начало голубые «джеты», до 100-130 км, где возникают гигантские вспышки красных «эльфов» и «спрайтов» . Этими разрядами через грозовые облака обмениваются две большие наэлектризованные массы – Земля и масса космической пыли в верхней атмосфере. По сути, «шуба» эта в своей нижней части начинается от верхней границы облакообразования. Ниже этой границы происходит конденсация атмосферной влаги, где частицы космической пыли участвуют в создании ядер конденсации. Далее пыль эта выпадает на земную поверхность вместе с осадками.

В начале 2012 года в Интернете появились сообщения на интересную тему. Вот одно из них : (Комсомольская правда, 28 Фев. 2012)

«Спутники НACA пoкaзaли: нeбo cтaлo oчeнь близкo к Зeмлe. За пocлeднee дecятилeтиe – c мaртa 2000 гoдa по фeврaль 2010 гoдa – выcoтa cлoя oблaкoв cнизилacь на 1 прoцeнт или, другими cлoвaми, на 30-40 мeтрoв. И это cнижeниe в ocнoвнoм oбуcлoвлeнo тем, что вce мeньшe oблaкoв cтaлo фoрмирoвaтьcя на больших выcoтaх, cooбщaeт infoniac.ru. Там их фoрмируeтcя c каждым гoдoм вce мeньшe. К тaкoму трeвoжнoму вывoду пришли учeныe из Унивeрcитeтa Oклeндa (Нoвaя Зeлaндия), прoaнaлизирoвaв дaнныe пeрвых 10 лет измeрeний выcoтнocти oблaкoв, пoлучeнныe мнoгoуглoвым cпeктрoрaдиoмeтрoм (MISR) c кocмичecкoгo aппaрaтa NASA Тeррa.

Пoкa мы тoчнo не знaeм, что вызвaлo cнижeниe выcoты oблaкoв, – признaлcя иccлeдoвaтeль прoфeccoр Рoджeр Дэвис (Roger Davies). – Но вoзмoжнo это прoизoшлo из-за измeнeний в циркуляции, кoтoрaя приводит к фoрмирoвaнию oблaкoв на бoльшoй выcoтe.

Климaтoлoги прeдупрeждaют: ecли oблaкa будут прoдoлжaть cнижaтьcя, то это мoжeт иметь вaжнoe влияние на глoбaльнoe измeнeниe климaтa. Бoлee низкий cлoй oблaчнocти мoжeт пoмoчь Зeмлe oхлaждaтьcя и притoрмoзить глoбaльнoe пoтeплeниe, oтвoдя тeплo в кocмoc. Но он, тaкжe, мoжeт прeдcтaвлять coбoй oтрицaтeльный эффект oбрaтнoй связи, то ecть измeнeниe, вызвaннoe глoбaльным пoтeплeниeм. Oднaкo, пoкa учeныe не могут дать oтвeт на то, мoжнo ли чтo-тo cкaзaть o будущем нaшeгo климaтa, ocнoвывaяcь на данных oблaкoв. Хотя oптимиcты cчитaют, что 10-лeтний пeриoд нaблюдeний cлишкoм кoрoткий, чтобы дeлaть тaкиe глoбaльныe выводы. Статья об этом опубликована в журнале Geophysical Research Letters».

Вполне можно предположить, что положение верхней границы образования облаков напрямую зависит от степени сжатия атмосферы. То, что обнаружили ученые из Новой Зеландии, возможно, есть следствие усиления сжатия, и в дальнейшем может служить индикатором изменения климата. Так, например, при повышении верхней границы облакообразования, можно делать выводы о начале глобального похолодания. В настоящее же время их исследования могут свидетельствовать о том, что глобальное потепление продолжается.

Само потепление происходит неравномерно на отдельных территориях Земли. Есть области, где среднегодовое повышение температуры значительно превышает среднее на всей планете, достигая 1,5 – 2,0°С. Также есть территории, где погода меняется даже в сторону похолодания. Однако средние результаты показывают, что в целом за столетний период среднегодовая температура на Земле увеличилась приблизительно на 0,5°С .

Земная атмосфера – открытая, рассеивающая энергию система, т.е. она поглощает тепло от Солнца и земной поверхности, она же и излучает тепло обратно к поверхности Земли и в открытый космос. Эти тепловые процессы описываются тепловым балансом Земли. При установившемся тепловом равновесии Земля излучает в космос ровно столько тепла, сколько получает его от Солнца. Такой тепловой баланс можно назвать нулевым. Но тепловой баланс может быть положительным при потеплении климата и может быть отрицательным при похолодании. То есть при положительном балансе Земля поглощает и накапливает тепла больше, нежели излучает в космос. При отрицательном балансе – наоборот. В настоящее время Земля имеет явно положительный тепловой баланс. В феврале 2012 года в Интернете появилось сообщение о работе на эту тему ученых из США и Франции. Вот выдержка из сообщения :

«Ученые переопределили тепловой баланс Земли

Наша планета продолжает впитывать больше энергии, чем возвращает в космос, выяснили исследователи из США и Франции. И это несмотря на чрезвычайно долгий и глубокий последний солнечный минимум, который означал сокращение потока лучей, которые поступали от нашей звезды. Группа ученых, возглавляемая Джеймсом Хансеном, директором института космических исследований Годдарда (GISS), выполнила наиболее точный на данный момент подсчет энергетического баланса Земли за период с 2005 по 2010 год включительно.

Оказалось, планета поглощает сейчас в среднем по 0,58 ватта избыточной энергии на каждый квадратный метр поверхности. Такое текущее превышение прихода над расходом. Это значение - несколько ниже, чем свидетельствовали предварительные оценки, однако оно говорит о долгосрочном повышении средней температуры. (…) С учетом других наземных, а также спутниковых измерений Хансен и его коллеги определили, что верхний слой основных океанов впитывает 71% указанной избыточной энергии, Южный океан - еще 12%, абиссаль (зона между 3 и 6 километрами глубины) поглощает 5%, льды - 8% и земля - 4%».

«… в глобальном потеплении последнего столетия нельзя обвинять большие колебания в солнечной активности. Возможно, в будущем влияние Солнца на эти соотношения изменится, если сбудется прогноз о его глубоком сне. Но пока причины изменения климата в последние 50-100 лет приходится искать в другом. …».

Искать, вероятнее всего, следует в изменении среднего давления атмосферы. Принятая в 20-х годах прошлого века Международная стандартная атмосфера (МСА) устанавливает давление 760 мм. рт. ст. на уровне моря, на широте 45° при среднегодовой поверхностной температуре 288К (15°С). Но сейчас уже не та атмосфера, что была 90 – 100 лет назад, т.к. явно изменились её параметры. Сегодняшняя атмосфера в результате потепления должна иметь среднегодовую температуру 15,5°С при новом давлении на уровне моря на той же широте. Стандартная модель земной атмосферы связывает зависимостью температуру и давление от высоты над уровнем моря, где на каждые 1000 метров высоты тропосферы от уровня моря температура понижается на 6,5°С. Нетрудно посчитать, что на 0,5°С приходится 76,9 метров высоты. Но если мы возьмём по этой модели поверхностную температуру 15,5°С, которую мы имеем в результате глобального потепления, то она нам покажет 76,9 метров ниже уровня моря. Это говорит о том, что старая модель не отвечает сегодняшним реалиям. Справочники нам говорят, что при температуре 15°С в нижних слоях атмосферы давление уменьшается на 1 мм. рт. ст. с подъёмом на каждые 11 метров . Отсюда мы можем узнать перепад давления соответствующий перепаду высот 76,9 м ., и это будет самый простой способ определения прироста давления приведшего к глобальному потеплению.

Прирост давления будет равен:

76,9 / 11 = 6,99 мм. рт. ст.

Однако мы можем более точно определить давление, приведшее к потеплению, если обратимся к работе академика (РАЕН) Института океанологии им. П.П.Ширшова РАН О.Г.Сорохтина «Адиабатическая теория парникового эффекта» Эта теория строго научно даёт определение парникового эффекта планетной атмосферы, даёт формулы определяющие поверхностную температуру Земли и температуру на любом уровне тропосферы, а также раскрывает полную несостоятельность теорий о влиянии «парниковых газов» на потепление климата. Эта теория применима для объяснения изменения температуры атмосферы в зависимости от изменения среднего атмосферного давления. Согласно этой теории, как принятая в 20-х годах МСА, так и реальная на сегодняшний момент атмосфера должны подчиняться одной и той же формуле определения температуры на любом уровне тропосферы.

Итак, «Если входным сигналом является так называемая температура абсолютно чёрного тела, характеризующая нагрев тела, удалённого от Солнца на расстояние Земля–Солнце, только за счёт поглощения солнечного излучения (T bb = 278,8 К = +5,6 °С для Земли), то средняя приземная температура T s линейно зависит от неё»:

Т s = b α ∙ Т bb ∙ р α , (1)

где b – масштабный множитель (если измерения проводить в физических атмосферах, то для Земли b = 1,186 атм–1); T bb = 278,8 К = +5,6 °С – нагрев поверхности Земли только за счёт поглощения солнечного излучения; α – показатель адиабаты, среднее значение которого для влажной, поглощающей ИК-излучение тропосферы Земли равно 0,1905» .

Как видно из формулы, температура T s зависит ещё и от давления р.

И, если нам известно, что средняя приземная температура по причине глобального потепления повысилась на 0,5 °С и равна теперь 288,5 К (15,5°С), то мы можем из этой формулы узнать какое давление на уровне моря привело к этому потеплению.

Преобразуем уравнение и найдем это давление:

р α = Т s : (b α Т bb),

р α =288,5 : (1,186 0,1905 278,8) = 1,001705,

р = 1,008983 атм;

или 102235,25 Па;

или 766,84 мм. рт. ст.

Из полученного результата видно, что к потеплению привело повышение среднего атмосферного давления на 6,84 мм. рт. ст. , что довольно близко к полученному выше результату. Это небольшая величина, если учесть, что погодные перепады атмосферного давления в пределах 30 – 40 мм. рт. ст. обычное явление для отдельно взятой местности. Перепад же давления между тропическим циклоном и континентальным антициклоном может достигать 175 мм. рт. ст. .

Итак, сравнительно небольшое среднегодовое повышение атмосферного давления привело к заметному потеплению климата. Это дополнительное сжатие внешними силами говорит о совершении определенной работы. И не имеет значения, сколько времени было затрачено на этот процесс – 1 час, 1 год или 1 столетие. Имеет значение результат этой работы – повышение температуры атмосферы, которое свидетельствует о повышении её внутренней энергии. И, так как атмосфера Земли является открытой системой, то образующийся избыток энергии она должна отдавать в окружающую среду до установления нового уровня теплового баланса с новой температурой. Окружающей средой для атмосферы является земная твердь с океаном и открытый космос. Земная твердь с океаном, как отмечалось выше, в настоящее время « … продолжает впитывать больше энергии, чем возвращает в космос» . А вот с излучением в космос дело обстоит иначе. Радиационное излучение тепла в космос характеризуется радиационной (эффективной) температурой T e , под которой эта планета видна из космоса, и которая определяется так:

Где σ = 5,67 . 10 –5 эрг/(см 2 . с. К 4) – постоянная Стефана–Больцмана, S – солнечная постоянная на удалении планеты от Солнца, А – альбедо, или отражательная способность, планеты, в основном регулируемая её облачным покровом. Для Земли S = 1,367 . 10 6 эрг/(см 2 . с), А ≈ 0,3 , следовательно T e = 255 К (-18 °С);

Температура 255 К (-18 °С) соответствует высоте 5000 метров, т.е. высоте интенсивного облакообразования, высота которого, как утверждают ученые из Новой Зеландии, снизилась на 30-40 метров за последние 10 лет. Следовательно, площадь сферы, излучающей тепло в космос, при сжатии атмосферы извне уменьшается, а, значит, уменьшается и излучение тепла в космос. Этот фактор явно влияет в сторону потепления. Далее, из формулы (2) видно, что радиационная температура излучения Земли зависит практически только от А – альбедо Земли. Но любое повышение поверхностной температуры усиливает испарение влаги и увеличивает облачность Земли, а это, в свою очередь, повышает отражательную способность земной атмосферы, а значит, и альбедо планеты. Повышение же альбедо приводит к понижению радиационной температуры излучения Земли, следовательно, к снижению теплового потока уходящего в космос. Здесь надо отметить, что в результате повышения альбедо увеличивается отражение солнечного тепла от облаков в космос и сокращается его поступление на земную поверхность. Но даже если влияние этого фактора, действующего в противоположном направлении, полностью компенсирует влияние фактора повышения альбедо, то и тогда налицо факт того, что весь избыток тепла остаётся на планете . Вот почему даже незначительное изменение среднего атмосферного давления ведёт к заметному изменению климата. Повышению атмосферного давления способствует также и рост самой атмосферы за счет увеличения количества газов привносимых с метеорным веществом. Такова в общих чертах схема глобального потепления от повышения атмосферного давления, первоначальная причина которого лежит в воздействии космической пыли на верхнюю атмосферу.

Как уже было отмечено, потепление происходит неравномерно на отдельных территориях Земли. Следовательно, где-то повышения давления нет, где-то даже отмечено понижение, а там где повышение имеет место, оно может объясняться влиянием глобального потепления, ведь температура и давление взаимозависимы в стандартной модели земной атмосферы. Само же глобальное потепление объясняется повышением содержания в атмосфере техногенных «парниковых газов». Но в действительности это не так.

Чтобы убедиться в этом, обратимся еще раз к «Адиабатической теории парникового эффекта» академика О.Г.Сорохтина, где научно доказано, что так называемые «парниковые газы», никакого отношения к глобальному потеплению не имеют. И, что, если даже заменить воздушную атмосферу Земли на атмосферу, состоящую из углекислого газа, то и это не приведёт к потеплению, а наоборот, к некоторому похолоданию. Единственный вклад в потепление «парниковые газы» могут внести приращением массы ко всей атмосфере и, соответственно повышением давления. Но, как пишется в этой работе:

«По разным оценкам, в настоящее время за счёт сжигания природного топлива в атмосферу поступает около 5–7 млрд т углекислого газа, или 1,4–1,9 млрд т чистого углерода, что не только снижает теплоёмкость атмосферы, но и несколько увеличивает её общее давление. Эти факторы действуют в противоположных направлениях, в результате средняя температура земной поверхности меняется очень мало. Так, например, при двукратном увеличении концентрации СО 2 в земной атмосфере с 0,035 до 0,07% (по объёму), которое ожидается к 2100 г., давление должно увеличиться на 15 Па, что вызовет повышение температуры примерно на 7,8 . 10 –3 К».

0,0078°С – это действительно очень мало. Так наука начинает признавать, что на современное глобальное потепление не влияют ни колебания солнечной активности , ни увеличение концентрации в атмосфере техногенных «парниковых» газов. И взоры ученых обращаются на космическую пыль. Об этом говорит следующее сообщение из Интернета:

«В изменении климата виновата космическая пыль? (05 апреля 2012,) (…) Новая исследовательская программа была начата с целью узнать, сколько этой пыли входит в атмосферу Земли, и как она может влиять на наш климат. Считается, что точная оценка пыли также поможет в понимании того, как частицы переносятся через разные слои атмосферы Земли. Ученые из университета Лидса уже представили проект по изучению влияния космической пыли на земную атмосферу после того, как получили грант 2,5 млн. евро от Европейского исследовательского совета. Проект рассчитан на 5 лет исследований. Международная команда состоит из 11 ученых в Лидсе и еще 10 исследовательских групп в США и Германии (…)» .

Обнадеживающее сообщение. Похоже, что наука приближается к открытию настоящей причины изменений климата.

В связи со всем вышеизложенным можно добавить, что в будущем предвидится пересмотр основных понятий и физических параметров, касающихся атмосферы Земли. Классическое определение, что атмосферное давление создаётся гравитационным притяжением воздушного столба к Земле, становится не совсем верным. Отсюда также неверной становится величина массы атмосферы, вычисленная из атмосферного давления действующего на всю площадь поверхности Земли. Всё становится гораздо сложнее, т.к. существенную составляющую атмосферного давления представляет сжатие атмосферы внешними силами магнитного и гравитационного притяжения массы космической пыли, насыщающей верхние слои атмосферы.

Это дополнительное сжатие атмосферы Земли было всегда, во все времена, т.к. нет в космическом пространстве областей свободных от космической пыли. И именно благодаря этому обстоятельству Земля имеет достаточно тепла для развития биологической жизни. Как и было сказано в ответе Махатмы:

«…что тепло, которое получает Земля от лучей солнца, является, в самой большей степени, лишь третью, если не меньше, количества, получаемого ею непосредственно от метеоров», т.е. от воздействия метеорной пыли.

г. Усть-Каменогорск, Казахстан, 2013 г.

Исследование космической (метеорной ) пыли на поверхности Земли : обзор проблемы

А .П . Бояркина, Л .М . Гиндилис

Космическая пыль как астрономический фактор

Под космической пылью понимают частицы твердого вещества размером от долей микрона до нескольких микрон. Пылевая материя - один из важных компонентов космического пространства. Она заполняет межзвездное, межпланетное и околоземное пространство, пронизывает верхние слои земной атмосферы и выпадает на поверхность Земли в виде так называемой метеорной пыли, являясь одной из форм материального (вещественного и энергетического) обмена в системе «Космос - Земля». При этом она оказывает влияние на целый ряд процессов, происходящих на Земле.

Пылевая материя в межзвездном пространстве

Межзвездная среда состоит из газа и пыли, перемешанных в отношении 100:1 (по массе), т.е. масса пыли составляет 1% от массы газа. Средняя плотность газа составляет 1 атом водорода на кубический сантиметр или 10 -24 г/cм 3 . Плотность пыли соответственно в 100 раз меньше. Несмотря на столь ничтожную плотность, пылевая материя оказывает существенное влияние на процессы, происходящие в Космосе. Прежде всего, межзвездная пыль поглощает свет, из-за этого удаленные объекты, расположенные вблизи плоскости галактики (где концентрация пыли наибольшая), в оптической области не видны. Например, центр нашей Галактики наблюдается только в инфракрасной области, радиодиапазоне и рентгене. А другие галактики могут наблюдаться в оптическом диапазоне, если они расположены вдали от галактической плоскости, на высоких галактических широтах. Поглощение света пылью приводит к искажению расстояний до звезд, определяемых фотометрическим способом. Учет поглощения составляет одну из важнейших задач наблюдательной астрономии. При взаимодействии с пылью изменяется спектральный состав и поляризация света.

Газ и пыль в галактическом диске распределены неравномерно, образуя отдельные газопылевые облака, концентрация пыли в них приблизительно в 100 раз выше, чем в межоблачной среде. Плотные газопылевые облака не пропускают свет звезд, находящихся за ними. Поэтому они выглядят как темные области на небе, которые получили название темные туманности. Примером может служить область «Угольного мешка» в Млечном Пути или туманность «Конская голова» в созвездии Ориона. Если вблизи газопылевого облака находятся яркие звезды, то благодаря рассеянию света на частицах пыли такие облака светятся, они получили название отражательных туманностей. Примером может служить отражательная туманность в скоплении Плеяды. Наиболее плотными являются облака молекулярного водорода H 2 , плотность их в 10 4 -10 5 раз выше, чем в облаках атомарного водорода. Соответственно и плотность пыли во столько же раз выше. Помимо водорода молекулярные облака содержат десятки других молекул. Пылевые частицы являются ядрами конденсации молекул, на их поверхности происходят химические реакции с образованием новых, более сложных молекул. Молекулярные облака - область интенсивного звездообразования.

По составу межзвездные частицы состоят из тугоплавкого ядра (силикаты, графит, карбид кремния, железо) и оболочки из летучих элементов (H, H 2 , O, OH, H 2 O). Имеются также очень маленькие силикатные и графитовые частицы (без оболочки) размером порядка сотых долей микрона. Согласно гипотезе Ф.Хойла и Ч.Викрамасинга значительная доля межзвездной пыли, до 80%, состоит из бактерий.

Межзвездная среда непрерывно пополняется за счет притока вещества при сбросе оболочек звезд на поздних стадиях их эволюции (особенно при вспышках сверхновых). С другой стороны, она сама является источником образования звезд и планетных систем.

Пылевая материя в межпланетном и околоземном пространстве

Межпланетная пыль образуется главным образом в процессе распада периодических комет, а также при дроблении астероидов. Образование пыли происходит непрерывно, и также непрерывно идет процесс выпадения пылинок на Солнце под действием радиационного торможения. В результате образуется постоянно обновляющаяся пылевая среда, заполняющая межпланетное пространство и находящаяся в состоянии динамического равновесия. Плотность ее хотя и выше чем в межзвездном пространстве, но все же очень мала: 10 -23 -10 -21 г/см 3 . Тем не менее, она заметно рассеивает солнечный свет. При его рассеянии на частицах межпланетной пыли возникают такие оптические явления, как зодиакальный свет, фраунгоферова составляющая солнечной короны, зодиакальная полоса, противосияние. Рассеянием на пылинках обусловлена и зодиакальная составляющая свечения ночного неба.

Пылевая материя в Солнечной системе в сильной степени концентрируется к эклиптике. В плоскости эклиптики ее плотность убывает приблизительно пропорционально расстоянию от Солнца. Вблизи Земли, а также вблизи других больших планет концентрация пыли под действием их притяжения увеличивается. Частицы межпланетной пыли движутся вокруг Солнца по сокращающимся (вследствие радиационного торможения) эллиптическим орбитам. Скорость их движения составляет несколько десятков километров в секунду. При столкновении с твердыми телами, в том числе с космическими аппаратами, они вызывают заметную эрозию поверхности.

Сталкиваясь с Землей и сгорая в ее атмосфере на высоте около 100 км, космические частицы вызывают хорошо известное явление метеоров (или «падающих звезд»). На этом основании они получили название метеорных частиц, и весь комплекс межпланетной пыли часто называют метеорной материей или метеорной пылью. Большинство метеорных частиц представляют собой рыхлые тела кометного происхождения. Среди них выделяют две группы частиц: пористые частицы плотностью от 0,1 до 1 г/см 3 и так называемые пылевые комочки или пушистые хлопья, напоминающие снежинки с плотностью менее 0,1 г/см 3 . Кроме того, реже встречаются более плотные частицы астероидального типа плотностью более 1 г/см 3 . На больших высотах преобладают рыхлые метеоры, на высоте ниже 70 км - астероидальные частицы со средней плотностью 3,5 г/см 3 .

В результате дробления рыхлых метеорных тел кометного происхождения на высотах 100-400 км от поверхности Земли образуется достаточно плотная пылевая оболочка, концентрация пыли в которой в десятки тысяч раз выше, чем в межпланетном пространстве. Рассеяние солнечного света в этой оболочке обусловливает сумеречное свечение неба при погружении солнца под горизонт ниже 100 º .

Наиболее крупные и наиболее мелкие метеорные тела астероидального типа достигают поверхности Земли. Первые (метеориты) достигают поверхности в силу того, что они не успевают полностью разрушиться и сгореть при полете сквозь атмосферу; вторые - в силу того, что их взаимодействие с атмосферой, благодаря ничтожной массе (при достаточно большой плотности), происходит без заметного разрушения.

Выпадение космической пыли на поверхность Земли

Если метеориты уже давно были в поле зрения науки, то космическая пыль долгое время не привлекала внимание ученых.

Понятие о космической (метеорной) пыли было введено в науку во второй половине XIX столетия, когда известный голландский полярный исследователь Норденшельд (A.E. Nordenskjöld) обнаружил на поверхности льда пыль предположительно космического происхождения . Приблизительно в то же время, в середине 70-х годов XIX столетия Муррей (I. Murray) описал округлые магнетитовые частицы, обнаруженные в отложениях глубоководных осадков Тихого океана , происхождение которых также связывалось с космической пылью. Однако эти предположения долгое время не находили подтверждения, оставаясь в рамках гипотезы. Вместе с тем и научное изучение космической пыли продвигалось крайне медленно, на что указывал академик В.И. Вернадский в 1941 г. .

Впервые он обратил внимание на проблему космической пыли в 1908 г. и затем возвращался к ней в 1932 и 1941 годах . В работе «Об изучении космической пыли» В.И. Вернадский писал: «…Земля связана с космическими телами и с космическим пространством не только обменом разных форм энергии. Она теснейшим образом связана с ними материально… Среди материальных тел, падающих на нашу планету из космического пространства, доступны нашему непосредственному изучению преимущественно метеориты и обычно к ним причисляемая космическая пыль… Метеориты - и по крайней мере в некоторой своей части связанные с ними болиды - являются для нас всегда неожиданными в своем проявлении… Иное дело - космическая пыль: все указывает на то, что она падает непрерывно, и возможно, эта непрерывность падения существует в каждой точке биосферы, распределена равномерно на всю планету. Удивительно, что это явление, можно сказать, совсем не изучено и целиком исчезает из научного учета » .

Рассматривая в указанной статье известные наиболее крупные метеориты, В.И. Вернадский особое внимание уделяет Тунгусскому метеориту, поисками которого под его непосредственным руководством занимался Л.А. Кулик. Крупные осколки метеорита не были найдены, и в связи с этим В.И. Вернадский делает предположение, что он «…является новым явлением в летописях науки - проникновением в область земного притяжения не метеорита, а огромного облака или облаков космической пыли, шедших с космической скоростью » .

К этой же теме В.И. Вернадский возвращается в феврале 1941 г. в своем докладе «О необходимости организации научной работы по космической пыли» на заседании Комитета по метеоритам АН СССР . В этом документе, наряду с теоретическими размышлениями о происхождении и роли космической пыли в геологии и особенно в геохимии Земли, он подробно обосновывает программу поисков и сбора вещества космической пыли, выпавшей на поверхность Земли, с помощью которой, считает он, можно решить и ряд задач научной космогонии о качественном составе и «господствующем значении космической пыли в строении Вселенной». Необходимо изучать космическую пыль и учесть ее как источник космической энергии, непрерывно привносимой нам из окружающего пространства. Масса космической пыли, отмечал В.И.Вернадский, обладает атомной и другой ядерной энергией, которая не безразлична в своем бытии в Космосе и в ее проявлении на нашей планете. Для понимания роли космической пыли, подчеркивал он, необходимо иметь достаточный материал для ее исследования. Организация сбора космической пыли и научное исследование собранного материала - есть первая задача, стоящая перед учеными. Перспективными для этой цели В.И. Вернадский считает снеговые и ледниковые природные планшеты высокогорных и арктических областей, удаленных от промышленной деятельности человека.

Великая Отечественная война и смерть В.И. Вернадского, помешали реализации этой программы. Однако она стала актуальной во второй половине ХХ века и способствовала активизации исследований метеорной пыли в нашей стране .

В 1946 г. по инициативе академика В.Г. Фесенкова была организована экспедиция в горы Заилийского Ала-Тау (Северный Тянь-Шань), задачей которой было изучение твердых частиц с магнитными свойствами в снеговых отложениях . Место отбора снега было выбрано на левой боковой морене ледника Туюк-Су (высота 3500 м), большая часть хребтов, окружавших морену, была покрыта снегом, что снижало возможность загрязнения земной пылью. Оно было удалено и от источников пыли, связанных с деятельностью человека, и окружено со всех сторон горами.

Метод сбора космической пыли в снеговом покрове заключался в следующем. С полоски шириной 0,5 м до глубины 0,75 м собирался снег деревянной лопаткой, переносился и перетапливался в алюминиевой посуде, сливался в стеклянную посуду, где в течение 5 часов в осадок выпадала твердая фракция. Затем верхняя часть воды сливалась, добавлялась новая партия талого снега и т.д. В результате было перетоплено 85 ведер снега с общей площади 1,5 м 2 , объемом 1,1 м 3 . Полученный осадок был передан в лабораторию Института астрономии и физики АН Казахской ССР, где вода была выпарена и подверглась дальнейшему анализу. Однако поскольку эти исследования не дали определенного результата, Н.Б. Дивари пришел к выводу, что для отбора проб снега в данном случае лучше использовать либо очень старые слежавшиеся фирны, либо открытые ледники.

Значительный прогресс в изучении космической метеорной пыли наступил в середине ХХ века, когда в связи с запусками искусственных спутников Земли получили развитие прямые методы изучения метеорных частиц - непосредственная их регистрация по числу столкновений с космическим аппаратом или различного вида ловушками (установленными на ИСЗ и геофизических ракетах, запускаемых на высоту несколько сотен километров). Анализ полученных материалов позволил, в частности, обнаружить наличие пылевой оболочки вокруг Земли на высотах от 100 до 300 км над поверхностью (о чем говорилось выше).

Наряду с изучением пыли с помощью космических аппаратов проводилось изучение частиц в нижней атмосфере и различных природных накопителях: в высокогорных снегах, в ледниковом покрове Антарктиды, в полярных льдах Арктики, в торфяных отложениях и глубоководном морском иле. Последние наблюдаются преимущественно в виде так называемых «магнитных шариков», то есть плотных шаровых частиц, обладающих магнитными свойствами. Размер этих частиц от 1 до 300 микрон, масса от 10 -11 до 10 -6 г .

Еще одно направление связано с изучением астрофизических и геофизических явлений, связанных с космической пылью; сюда относятся различные оптические явления: свечение ночного неба, серебристые облака, зодиакальный свет, противосияние и др. Их изучение также позволяет получить важные данные о космической пыли . Исследования метеоров были включены в программу Международного геофизического года 1957-1959 и 1964-1965 гг.

В результате этих работ были уточнены оценки общего притока космической пыли на поверхность Земли. Согласно оценкам Т.Н. Назаровой, И.С. Астаповича и В.В. Федынского, общий приток космической пыли на Землю достигает до 10 7 т/год . По оценке А.Н. Симоненко и Б.Ю. Левина (по данным на 1972 г.) приток космической пыли на поверхность Земли составляет 10 2 -10 9 т/год , по другим, более поздним исследованиям - 10 7 -10 8 т/год .

Продолжались исследования по сбору метеорной пыли. По предложению академика А.П. Виноградова во время 14-й антарктической экспедиции (1968-1969 гг.) проводились работы с целью выявления закономерностей пространственно-временных распределений отложения внеземного вещества в ледниковом покрове Антарктиды . Изучался поверхностный слой снежного покрова в районах станций Молодежная, Мирный, Восток и на участке протяженностью около 1400 км между станциями Мирный и Восток. Отбор проб снега проводился из шурфов глубиной 2-5 м в точках, удаленных от полярных станций. Образцы упаковывались в полиэтиленовые мешки или специальные пластиковые контейнеры. В стационарных условиях образцы растапливались в стеклянной или алюминиевой посуде. Полученную воду фильтровали с помощью разборной воронки через мембранные фильтры (размер пор 0,7 мкм). Фильтры смачивали глицерином и в проходящем свете при увеличении 350Х определяли количество микрочастиц.

Изучались также полярные льды , донные отложения Тихого океана , осадочные породы , солевые отложения . При этом перспективным направлением показали себя поиски оплавленных микроскопических сферических частиц, достаточно легко идентифицируемых среди остальных фракций пыли.

В 1962 г. при Сибирском отделении АН СССР была создана Комиссия по метеоритам и космической пыли, возглавляемая академиком В.С. Соболевым, которая просуществовала до 1990 г. и создание которой было инициировано проблемой Тунгусского метеорита. Работы по изучению космической пыли проводились под руководством академика РАМН Н.В. Васильева.

При оценке выпадений космической пыли, наряду с другими природными планшетами, использовался торф, сложенный мхом сфагнум бурый по методике томского ученого Ю.А. Львова . Этот мох достаточно широко распространен в средней полосе земного шара, минеральное питание получает только из атмосферы и обладает способностью консервировать его в слое, бывшем поверхностным во время попадания на него пыли. Послойная стратификация и датировка торфа позволяет давать ретроспективную оценку ее выпадения. Изучались как сферические частицы размером 7-100 мкм, так и микроэлементный состав торфяного субстрата - функции содержавшейся в нем пыли.

Методика выделения космической пыли из торфа заключается в следующем . На участке верхового сфагнового болота выбирается площадка с ровной поверхностью и торфяной залежью, сложенной мхом сфагнум бурый (Sphagnum fuscum Klingr). С ее поверхности на уровне моховой дернины срезаются кустарнички. Закладывается шурф на глубину до 60 см, у борта его размечается площадка нужного размера (например, 10х10 см), затем с двух или трех его сторон обнажается колонка торфа, разрезается на пласты по 3 см каждый, которые упаковываются в полиэтиленовые пакеты. Верхние 6 слоев (очес) рассматриваются совместно и могут служить для определения возрастных характеристик по методике Е.Я. Мульдиярова и Е.Д. Лапшина . Каждый пласт в лабораторных условиях промывается сквозь сито с диаметром ячей 250 мк в течение не менее 5 мин. Прошедший сквозь сито гумус с минеральными частицами отстаивается до полного выпадения осадка, затем осадок сливается в чашку Петри, где высушивается. Упакованный в кальку, сухой образец удобен для перевозки и для дальнейшего изучения. В соответствующих условиях образец озоляется в тигле и муфельной печи в течение часа при температуре 500-600 град. Зольный остаток взвешивается и подвергается либо осмотру под бинокулярным микроскопом при увеличении в 56 раз на предмет выявления сферических частиц размером 7-100 и более мкм, либо подвергается другим видам анализа. Т.к. минеральное питание этот мох получает только из атмосферы, то его зольная составляющая может являться функцией входящей в ее состав космической пыли.

Так исследования в районе падения Тунгусского метеорита, удаленном от источников техногенного загрязнения на многие сотни километров, позволили оценить приток на поверхность Земли сферических частиц размером 7-100 мкм и более. Верхние слои торфа дали возможность оценить выпадение глобального аэрозоля на время исследования; слои, относящиеся к 1908 г. - вещества Тунгусского метеорита; нижние (доиндустриальные) слои - космической пыли. Приток космических микросферул на поверхность Земли при этом оценивается величиной (2-4)·10 3 т/год , а в целом космической пыли - 1,5·10 9 т/год . Были использованы аналитические методы анализа, в частности нейтронно-активационный, для определения микроэлементного состава космической пыли. По этим данным ежегодно на поверхность Земли выпадает из космического пространства (т/год): железа (2·10 6), кобальта (150), скандия (250) .

Большой интерес в плане указанных выше исследований представляют работы Е.М. Колесникова с соавторами, обнаружившими изотопные аномалии в торфе района падения Тунгусского метеорита, относящиеся к 1908 г. и говорящие, с одной стороны, в пользу кометной гипотезы этого явления, с другой - проливающие свет на кометное вещество, выпавшее на поверхность Земли .

Наиболее полным обзором проблемы Тунгусского метеорита, в том числе его вещества, на 2000 г. следует признать монографию В.А. Бронштэна . Последние данные о веществе Тунгусского метеорита были доложены и обсуждены на Международной конференции «100 лет Тунгусскому феномену», Москва, 26-28 июня 2008 г. . Несмотря на достигнутый прогресс в изучении космической пыли, ряд проблем все еще остается не решенным.

Источники метанаучного знания о космической пыли

Наряду с данными, которые получены современными методами исследования, большой интерес представляют сведения, содержащиеся во вненаучных источниках: «Письмах Махатм», Учении Живой Этики, письмах и трудах Е.И. Рерих (в частности, в ее работе «Изучение свойств человека», где дается обширная программа научных исследований на многие годы вперед) .

Так в письме Кут Хуми 1882 г. редактору влиятельной англоязычной газеты «Пионер» А.П. Синнету (оригинал письма хранится в Британском музее) приводятся следующие данные о космической пыли :

- «Высоко над нашей земной поверхностью воздух пропитан и пространство наполнено магнитной и метеорной пылью, которая даже не принадлежит нашей солнечной системе»;

- «Снег, в особенности в наших северных областях, полон метеорного железа и магнитных частиц, отложения последних находимы даже на дне океанов». «Миллионы подобных метеоров и тончайших частиц достигают нас ежегодно и ежедневно»;

- «каждое атмосферическое изменение на Земле и все пертурбации происходят от соединенного магнетизма» двух больших «масс» - Земли и метеорной пыли;

Существует «земное магнетическое притяжение метеорной пыли и прямое воздействие последней на внезапные изменения температуры, особенно в отношении тепла и холода»;

Т.к. «наша земля со всеми другими планетами несется в пространстве, она получает большую часть космической пыли на свое северное полушарие, нежели на южное»; «…этим объясняется количественное преобладание континентов в северном полушарии и большее изобилие снега и сырости»;

- «Тепло, которое получает земля от лучей солнца, является, в самой большей степени, лишь третью, если не меньше, количества получаемого ею непосредственно от метеоров»;

- «Мощные скопления метеорного вещества» в межзвездном пространстве приводят к искажению наблюдаемой интенсивности звездного света и, следовательно, к искажению расстояний до звезд, полученных фотометрическим путем.

Ряд этих положений опережали науку того времени и были подтверждены последующими исследованиями. Так, исследования сумеречного свечения атмосферы, выполненные в 30-50-х гг. XX века, показали, что, если на высотах меньше 100 км свечение определяется рассеянием солнечного света в газовой (воздушной) среде, то на высотах более 100 км преобладающую роль играет рассеяние на пылинках. Первые наблюдения, выполненные с помощью искусственных спутников, привели к обнаружению пылевой оболочки Земли на высотах несколько сот километров, на что указывается в упомянутом письме Кут Хуми. Особый интерес представляют данные об искажениях расстояний до звезд, полученных фотометрическим путем. По существу это было указанием на наличие межзвездного поглощения, открытого в 1930 г. Тремплером, которое по праву считается одним из важнейших астрономических открытий 20 века. Учет межзвездного поглощения привел к переоценке шкалы астрономических расстояний и, как следствие, к изменению масштаба видимой Вселенной .

Некоторые положения этого письма - о влиянии космической пыли на процессы в атмосфере, в частности на погоду, - не находят пока научного подтверждения. Здесь необходимо дальнейшее изучение.

Обратимся еще к одному источнику метанаучного знания - Учению Живой Этики, созданному Е.И. Рерих и Н.К. Рерихом в сотрудничестве с Гималайскими Учителями - Махатмами в 20-30 годы ХХ века. Первоначально изданные на русском языке книги Живой Этики в настоящее время переведены и изданы на многих языках мира. В них уделяется большое внимание научным проблемам. Нас в данном случае будет интересовать все, что связано с космической пылью.

Проблеме космической пыли, в частности ее притоку на поверхность Земли, в Учении Живой Этики уделяется достаточно много внимания.

«Обращайте внимание на высокие места, подверженные ветрам от снежных вершин. На уровне двадцати четырех тысяч футов можно наблюдать особые отложения метеорной пыли» (1927-1929 гг.) . «Недостаточно изучают аэролиты, еще меньше уделяют внимания космической пыли на вечных снегах и глетчерах. Между тем Космический Океан рисует свой ритм на вершинах» (1930-1931 гг.) . «Пыль метеорная недоступна глазу, но дает очень существенные осадки» (1932-1933 гг.) . «На самом чистом месте самый чистый снег насыщен пылью земной и космической, - так наполнено пространство даже при грубом наблюдении» (1936 г.) .

Вопросам космической пыли большое внимание уделено и в «Космологических записях» Е.И. Рерих (1940 г.) . Следует иметь в виду, что Е.И.Рерих внимательно следила за развитием астрономии и была в курсе последних ее достижений; она критически оценивала некоторые теории того времени (20-30 годы прошлого столетия), например в области космологии, и ее представления подтвердились в наше время . Учение Живой Этики и Космологические записи Е.И. Рерих содержат целый ряд положений о тех процессах, которые сопряжены с выпадением космической пыли на поверхность Земли и которые можно обобщить следующим образом:

На Землю постоянно кроме метеоритов выпадают материальные частицы космической пыли, которые привносят космическое вещество, несущее информацию о Дальних Мирах космического пространства;

Космическая пыль изменяет состав почв, снега, природных вод и растений;

Особенно это относится к местам залегания природных руд, которые не только являются своеобразными магнитами, притягивающими космическую пыль, но и следует ожидать некоторой дифференциации ее в зависимости от вида руды: «Так железо и прочие металлы притягивают метеоры, особенно когда руды находятся в естественном состоянии и не лишены космического магнетизма» ;

Большое внимание в Учении Живой Этики уделяется горным вершинам, которые по утверждению Е.И. Рерих «…являются величайшими магнитными станциями» . «…Космический Океан рисует свой ритм на вершинах» ;

Изучение космической пыли может привести к открытию новых, еще не обнаруженных современной наукой минералов, в частности - металла, обладающего свойствами, помогающими хранить вибрации с дальними мирами космического пространства;

При изучении космической пыли могут быть обнаружены новые виды микробов и бактерий ;

Но что особенно важно, Учение Живой Этики открывает новую страницу научного познания - воздействия космической пыли на живые организмы, в том числе - на человека и его энергетику. Она может оказывать разновидные влияния на организм человека и некоторые процессы на физическом и, особенно, тонком планах .

Эти сведения начинают находить подтверждение в современных научных исследованиях. Так в последние годы на космических пылинках были обнаружены сложные органические соединения и некоторые ученые заговорили о космических микробах . В этом плане особый интерес представляют работы по бактериальной палеонтологии, выполненные в Институте палеонтологии РАН . В этих работах, помимо земных пород, исследовались метеориты. Показано, что найденные в метеоритах микроокаменелости представляют собой следы жизнедеятельности микроорганизмов, часть которых подобна цианобактериям. В ряде исследований удалось экспериментально показать положительное влияние космического вещества на рост растений и обосновать возможность влияния его на организм человека .

Авторы Учения Живой Этики настоятельно рекомендуют организовать постоянное наблюдение за выпадением космической пыли. И в качестве ее природного накопителя использовать ледниковые и снеговые отложения в горах на высоте свыше 7 тыс. м. Рерихи, живя долгие годы в Гималаях, мечтают о создании там научной станции. В письме от 13 октября 1930 г. Е.И. Рерих пишет: «Станция должна развиться в Город Знания. Мы желаем в этом Городе дать синтез достижений, потому все области науки должны быть впоследствии представлены в нем… Изучение новых космических лучей, дающих человечеству новые ценнейшие энергии, возможно только на высотах , ибо все самое тонкое и самое ценное и мощное лежит в более чистых слоях атмосферы. Также разве не заслуживают внимания все метеорические осадки, осаждающиеся на снежных вершинах и несомые в долины горными потоками?» .

Заключение

Изучение космической пыли в настоящее время превратилось в самостоятельную область современной астрофизики и геофизики. Эта проблема особенно актуальна, поскольку метеорная пыль является источником космического вещества и энергии, непрерывно привносимых на Землю из космического пространства и активно влияющих на геохимические и геофизические процессы, а также оказывающих своеобразное воздействие на биологические объекты, в том числе на человека. Эти процессы пока еще почти не изучены. В изучении космической пыли не нашли должного применения ряд положений, содержащихся в источниках метанаучного знания. Метеорная пыль проявляется в земных условиях не только как феномен физического мира, но и как материя, несущая энергетику космического пространства, в том числе - миров иных измерений и иных состояний материи. Учет этих положений требует разработки совершенно новой методики изучения метеорной пыли. Но важнейшей задачей по-прежнему остается сбор и анализ космической пыли в различных природных накопителях.

Список литературы

1. Иванова Г.М., Львов В.Ю., Васильев Н.В., Антонов И.В. Выпадение космического вещества на поверхность Земли - Томск: изд-во Томск. ун-та, 1975. - 120 с.

2. Murray I. On the distribution of volcanic debris over the floor of ocean //Proc. Roy. Soc. Edinburg. - 1876. - Vol. 9.- P. 247-261.

3. Вернадский В.И. О необходимости организованной научной работы по космической пыли //Проблемы Арктики. - 1941. - № 5. - С. 55-64.

4. Вернадский В.И. Об изучении космической пыли //Мироведение. - 1932. - № 5. - С. 32-41.

5. Астапович И.С. Метеорные явления в атмосфере Земли. - М.: Госуд. изд. физ.-мат. литературы, 1958. - 640 с.

6. Флоренский К.П. Предварительные результаты тунгусской метеоритной комплексной экспедиции 1961 г. //Метеоритика. - М.: изд. АН СССР, 1963. - Вып. XXIII. - С. 3-29.

7. Львов Ю.А. О нахождении космического вещества в торфе //Проблема Тунгусского метеорита. - Томск: изд. Томск. ун-та, 1967. - С. 140-144.

8. Виленский В.Д. Сферические микрочастицы в ледниковом покрове Антарктиды //Метеоритика. - М.: «Наука», 1972. - Вып. 31. - С. 57-61.

9. Голенецкий С.П., Степанок В.В. Кометное вещество на Земле //Метеоритные и метеорные исследования. - Новосибирск: «Наука» Сибирское отделение, 1983. - С. 99-122.

10. Васильев Н.В., Бояркина А.П., Назаренко М.К. и др. Динамика притока сферической фракции метеорной пыли на поверхности Земли //Астроном. вестник. - 1975. - Т. IX. - № 3. - С. 178-183.

11. Бояркина А.П., Байковский В.В., Васильев Н.В. и др. Аэрозоли в природных планшетах Сибири. - Томск: изд. Томск. ун-та, 1993. - 157 с.

12. Дивари Н.Б. О сборе космической пыли на леднике Туюк-Су // Метеоритика. - М.: Изд. АН СССР, 1948. - Вып. IV. - С. 120-122.

13. Гиндилис Л.М. Противосияние как эффект рассеяния солнечного света на частицах межпланетной пыли //Астрон. ж. - 1962. - Т. 39. - Вып. 4. - С. 689-701.

14. Васильев Н.В., Журавлев В.К., Журавлева Р.К. и др. Ночные светящиеся облака и оптические аномалии, связанные с падением Тунгусского метеорита. - М.: «Наука», 1965. - 112 с.

15. Бронштэн В.А., Гришин Н.И. Серебристые облака. - М.: «Наука», 1970. - 360 с.

16. Дивари Н.Б. Зодиакальный свет и межпланетная пыль. - М.: «Знание», 1981. - 64 с.

17. Назарова Т.Н. Исследование метеорных частиц на третьем советском искусственном спутнике Земли //Искусственные спутники Земли. - 1960. - № 4. - С. 165-170.

18. Астапович И.С., Федынский В.В. Успехи метеорной астрономии в 1958-1961 гг. //Метеоритика. - М.: Изд. АН СССР, 1963. - Вып. XXIII. - С. 91-100.

19. Симоненко А.Н., Левин Б.Ю. Приток космического вещества на Землю //Метеоритика. - М.: «Наука», 1972. - Вып. 31. - С. 3-17.

20. Hadge P.W., Wright F.W. Studies of particles for extraterrestrial origin. A comparison of microscopic spherules of meteoritic and volcanic origin //J. Geophys. Res. - 1964. - Vol. 69. - № 12. - P. 2449-2454.

21. Parkin D.W., Tilles D. Influx measurement of extraterrestrial material //Science. - 1968. - Vol. 159.- № 3818. - P. 936-946.

22. Ganapathy R. The Tunguska explosion of 1908: discovery of the meteoritic debris near the explosion side and the South pole. - Science. - 1983. - V. 220. - No. 4602. - P. 1158-1161.

23. Hunter W., Parkin D.W. Cosmic dust in recent deep-sea sediments //Proc. Roy. Soc. - 1960. - Vol. 255. - № 1282. - P. 382-398.

24. Sackett W. M. Measured deposition rates of marine sediments and implications for accumulations rates of extraterrestrial dust //Ann. N. Y. Acad. Sci. - 1964. - Vol. 119. - № 1. - P. 339-346.

25. Вийдинг Х.А. Метеорная пыль в низах кембрийских песчаников Эстонии //Метеоритика. - М.: «Наука», 1965. - Вып. 26. - С. 132-139.

26. Utech K. Kosmische Micropartical in unterkambrischen Ablagerungen //Neues Jahrb. Geol. und Palaontol. Monatscr. - 1967. - № 2. - S. 128-130.

27. Иванов А.В., Флоренский К.П. Мелкодисперсное космическое вещество из нижнепермских солей //Астрон. вестник. - 1969. - Т. 3. - № 1. - С. 45-49.

28. Mutch T.A. Abundances of magnetic spherules in Silurian and Permian salt samples //Earth and Planet Sci. Letters. - 1966. - Vol. 1. - № 5. - P. 325-329.

29. Бояркина А.П., Васильев Н.В., Менявцева Т.А. и др. К оценке вещества Тунгусского метеорита в районе эпицентра взрыва //Космическое вещество на Земле. - Новосибирск: «Наука» Сибирское отделение, 1976. - С. 8-15.

30. Мульдияров Е.Я., Лапшина Е.Д. Датировка верхних слоев торфяной залежи, используемой для изучения космических аэрозолей //Метеоритные и метеорные исследования. - Новосибирск: «Наука» Сибирское отделение, 1983. - С. 75-84.

31. Лапшина Е.Д., Бляхорчук П.А. Определение глубины слоя 1908 г. в торфе в связи с поисками вещества Тунгусского метеорита //Космическое вещество и Земля. - Новосибирск: «Наука» Сибирское отделение, 1986. - С. 80-86.

32. Бояркина А.П., Васильев Н.В., Глухов Г.Г. и др. К оценке космогенного притока тяжелых металлов на поверхность Земли //Космическое вещество и Земля. - Новосибирск: «Наука» Сибирское отделение, 1986. - С. 203 - 206.

33. Колесников Е.М. О некоторых вероятных особенностях химического состава Тунгусского космического взрыва 1908 г. // Взаимодействие метеоритного вещества с Землей. - Новосибирск: «Наука» Сибирское отделение, 1980. - С. 87-102.

34. Колесников Е.М., Бёттгер Т., Колесникова Н.В., Юнге Ф. Аномалии в изотопном составе углерода и азота торфов района взрыва Тунгусского космического тела 1908 г. //Геохимия. - 1996. - Т. 347. - № 3. - С. 378-382.

35. Бронштэн В.А. Тунгусский метеорит: история исследования. - М.: А.Д. Сельянов, 2000. - 310 с.

36. Труды Международной конференции «100 лет Тунгусскому феномену», Москва, 26-28 июня 2008 г.

37. Рерих Е.И. Космологические записи //У порога нового мира. - М.: МЦР. Мастер-Банк, 2000. - С. 235 - 290.

38. Чаша Востока. Письма Махатмы. Письмо XXI 1882 г. - Новосибирск: Сибирское отд. изд. «Детская литература», 1992. - С. 99-105.

39. Гиндилис Л.М. Проблема сверхнаучного знания //Новая Эпоха. - 1999. - № 1. - С. 103; № 2. - С. 68.

40. Знаки Агни-Йоги. Учение Живой Этики. - М.: МЦР, 1994. - С. 345.

41. Иерархия. Учение Живой Этики. - М.: МЦР, 1995. - С.45

42. Мир Огненный. Учение Живой Этики. - М.: МЦР, 1995. - Ч. 1.

43. Аум. Учение Живой Этики. - М.: МЦР, 1996. - С. 79.

44. Гиндилис Л.М. Читая письма Е.И. Рерих: конечна или бесконечна Вселенная? //Культура и Время. - 2007. - № 2. - С. 49.

45. Рерих Е.И. Письма. - М.: МЦР, Благотворительный фонд им. Е.И. Рерих, Мастер-Банк, 1999. - Т. 1. - С. 119.

46. Сердце. Учение Живой Этики. - М.: МЦР. 1995. - С. 137, 138.

47. Озарение. Учение Живой Этики. Листы Сада Мории. Книга вторая. - М.: МЦР. 2003. - С. 212, 213.

48. Божокин С.В. Свойства космической пыли //Соросовский образовательный журнал. - 2000. - Т. 6. - № 6. - С. 72-77.

49. Герасименко Л.М., Жегалло Е.А., Жмур С.И. и др. Бактериальная палеонтология и исследования углистых хондритов //Палеонтологический журнал. -1999. - № 4. - C. 103-125.

50. Васильев Н.В., Кухарская Л.К., Бояркина А.П. и др. О механизме стимуляции роста растений в районе падения Тунгусского метеорита //Взаимодействие метеорного вещества с Землей. - Новосибирск: «Наука» Сибирское отделение, 1980. - С. 195-202.

Межзвездная пыль – это продукт разнообразных по своей интенсивности процессов, протекающих во всех уголках Вселенной, а ее невидимые частицы достигают даже поверхности Земли, летая в атмосфере вокруг нас.

Многократно подтвержденный факт – природа не любит пустоты. Межзвездное космическое пространство, представляющееся нам вакуумом, на самом деле заполнено газом и микроскопическими, размером в 0,01-0,2 мкм, частицами пыли. Соединение этих невидимых элементов рождает объекты огромной величины, своего рода облака Вселенной, способные поглощать некоторые виды спектрального излучения звезд, иногда полностью скрывая их от земных исследователей.

Из чего состоит межзвездная пыль?

Эти микроскопические частицы имеют ядро, которое формируется в газовой оболочке звезд и полностью зависит от ее состава. Например, из крупиц углеродных светил образуется графитовая пыль, а из кислородных – силикатная. Это интересный процесс, длящийся целыми десятилетиями: при остывании звезды теряют свои молекулы, которые улетая в пространство, соединяются в группы и становятся основой ядра пылинки. Далее формируется оболочка из атомов водорода и более сложных молекул. В условиях низких температур межзвездная пыль находится в виде кристалликов льда. Странствуя по Галактике, маленькие путешественники теряют часть газа при нагревании, но место улетевших молекул занимают новые.

Расположение и свойства

Основная часть пыли, которая приходится на нашу Галактику, сосредоточена в области Млечного Пути. Она выделяется на фоне звезд в виде черных полос и пятен. Несмотря на то, что вес пыли ничтожен в сравнении с весом газа и составляет всего 1%, она способна скрывать от нас небесные тела. Хотя частички друг от друга и отделяют десятки метров, но даже в таком количестве наиболее плотные области поглощают до 95% света, излучаемого звездами. Размеры газопылевых облаков в нашей системе действительно огромны, они измеряются сотнями световых лет.

Влияние на наблюдения

Глобулы Теккерея делают невидимой область неба, расположенную за ними

Межзвездная пыль поглощает большую часть излучения звезд, особенно в синем спектре, она искажает их свет и полярность. Наибольшее искажение получают короткие волны далеких источников. Микрочастицы, смешанные с газом, заметны в виде темных пятен на Млечном Пути.

В связи с этим фактором ядро нашей Галактики полностью скрыто и доступно для наблюдения только в инфракрасных лучах. Облака с высокой концентрацией пыли становятся практически непрозрачными, поэтому частицы, находящиеся внутри, не теряют свою ледяную оболочку. Современные исследователи и ученые считают, что именно они, слипаясь, образуют ядра новых комет.

Наукой доказано влияние гранул пыли на процессы образования звезд. Эти частицы содержат различные вещества, в том числе металлы, которые выступают катализаторами многочисленных химических процессов.

Наша планета каждый год увеличивает свою массу за счет падающей межзвездной пыли. Конечно, эти микроскопические частицы незаметны, а чтобы их найти и изучить исследуют дно океана и метеориты. Сбор и доставка межзвездной пыли стали одной из функций космических аппаратов и миссий.

При попадании в атмосферу Земли крупные частицы теряют свою оболочку, а мелкие незримо кружат годами вокруг нас. Космическая пыль вездесуща и схожа во всех галактиках, астрономы регулярно наблюдают темные черточки на лике далеких миров.