Сложная симметрия. Симме́трия - соразмерность, одинаковость в расположении частей чего-нибудь по противоположным сторонам от точки, прямой или плоскости


В геометрии - свойство геометрических фигур. Две точки, лежащие на одном перпендикуляре к данной плоскости (или прямой) по разные стороны и на одинаковом расстоянии от нее, называются симметричными относительно этой плоскости (или прямой). Фигура (плоская или пространственная) симметрична относительно прямой (оси симметрии) или плоскости (плоскости симметрии), если ее точки попарно обладают указанным свойством. Фигура симметрична относительно точки (центр симметрии), если ее точки попарно лежат на прямых, проходящих через центр симметрии, по разные стороны и на равных расстояниях от него.

Определение симметрии

Понятие "симметрия" (греч. symmetria - соразмерность), по словам одного из крупнейших математиков ХХ в. Германа Вейля (1885 - 1955), "является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство". Обычно под словом "симметрия" понимается гармония пропорций - нечто уравновешенное, не ограниченное пространственными объектами (например, в музыке, поэзии и т.п.). С другой стороны, это понятие имеет и чисто геометрический смысл, заключающийся в закономерной повторяемости в пространстве равных фигур или их частей. Как писал Е.С.Федоров (1901), "симметрия есть свойство геометрических фигур повторять свои части, или, выражаясь точнее, свойство их в различных положениях приходить в совмещение с первоначальным положением".

Однако, говоря о симметричных фигурах, следует различать два вида равенства: конгруэнтное (греч. congruens - совмещающийся) и энантиоморфное - зеркально равное (греч. enantios - противоположный, morphe - форма). В первом случае подразумеваются фигуры или их части, равенство которых можно выявить простым совмещением - наложением друг на друга, т.е. "собственным" движением, переводящим левую (Л) фигуру (например, левый винт, руку) в левую, правую (П) - в правую, при котором все точки одной фигуры совпадают с соответствующими точками другой. Во втором случае - равенство выявляется с помощью отражения - движения, переводящего объект в его зеркальное изображение (левое - в правое и наоборот).

При этом все точки пространственной фигуры становятся попарно симметричными относительно плоскости. В результате таких преобразований (движений) объект совмещается сам с собой, т.е. преобразуется в себя. Иными словами, он инвариантен по отношению к этому преобразованию, а следовательно, симметричен. Само преобразование, выявляющее симметричность объекта, называемое преобразованием симметрии, сохраняет неизменными метрические свойства частей объекта, а значит, и расстояния между любой парой их точек. Таким образом, объекты можно считать симметрично равными, если все точки одного из них переводятся в соответствующие точки другого по единому правилу.

Симметрии могут быть точными или приближёнными.

Симметрия в геометрии

Геометрическая симметрия - это наиболее известный тип симметрии для многих людей. Геометрический объект называется симметричным, если после того как он был преобразован геометрически, он сохраняет некоторые исходные свойства. Например, круг повёрнутый вокруг своего центра будет иметь ту же форму и размер, что и исходный круг. Поэтому круг называется симметричным относительно вращения (имеет осевую симметрию). Виды симметрий, возможных для геометрического объекта, зависят от множества доступных геометрических преобразований и того, какие свойства объекта должны оставаться неизменными после преобразования.

Виды геометрических симметрий:

Зеркальная симметрия

В физике инвариантность относительно группы вращений называется изотропностью пространства (все направления в пространстве равноправны) и выражается в инвариантности физических законов, в частности, уравнений движения, относительно вращений. Теорема Нётер связывает эту инвариантность с наличием сохраняющейся величины (интеграла движения) - углового момента .

Симметрия относительно точки

Скользящая симметрия

Симметрии в физике

Симметрия в физике
Преобразование Соответствующая
инвариантность
Соответствующий
закон
сохранения
↕ Трансляции времени Однородность
времени
…энергии
⊠ , , и -симметрии Изотропность
времени
…чётности
↔ Трансляции пространства Однородность
пространства
…импульса
↺ Вращения пространства Изотропность
пространства
…момента
импульса
⇆ Группа Лоренца (бусты) Относительность
Лоренц-ковариантность
…движения
центра масс
~ Калибровочное преобразование Калибровочная инвариантность …заряда

В теоретической физике поведение физической системы описывается некоторыми уравнениями. Если эти уравнения обладают какими-либо симметриями, то часто удаётся упростить их решение путём нахождения сохраняющихся величин (интегралов движения ). Так, уже в классической механике формулируется теорема Нётер , которая каждому типу непрерывной симметрии сопоставляет сохраняющуюся величину. Из неё, например, следует, что инвариантность уравнений движения тела с течением времени приводит к закону сохранения энергии ; инвариантность относительно сдвигов в пространстве - к закону сохранения импульса ; инвариантность относительно вращений - к закону сохранения момента импульса .

Суперсимметрия

Перенос в плоском четырёхмерном пространстве-времени не меняет физических законов. В теории поля трансляционная симметрии, согласно теореме Нётер , соответствует сохранению тензора энергии-импульса . В частности, чисто временные трансляции соответствуют закону сохранения энергии , а чисто пространственные сдвиги - закону сохранения импульса .

Симметрии в биологии

Симметрия в биологии - это закономерное расположение подобных (одинаковых, равных по размеру) частей тела или форм живого организма, совокупности живых организмов относительно центра или оси симметрии . Тип симметрии определяет не только общее строение тела, но и возможность развития систем органов животного. Строение тела многих многоклеточных организмов отражает определённые формы симметрии. Если тело животного можно мысленно разделить на две половины, правую и левую, то такую форму симметрии называют билатеральной . Этот тип симметрии свойственен подавляющему большинству видов, а также человеку. Если тело животного можно мысленно разделить не одной, а несколькими плоскостями симметрии на равные части, то такое животное называют радиально-симметричным . Этот тип симметрии встречается значительно реже.

Асимметрия - отсутствие симметрии. Иногда этот термин используется для описания организмов, лишённых симметрии первично, в противоположность диссимметрии - вторичной утрате симметрии или отдельных её элементов.

Понятия симметрии и асимметрии обратны. Чем более симметричен организм, тем менее он асимметричен и наоборот. Небольшое количество организмов полностью асимметричны. При этом следует различать изменчивость формы (например у амёбы) от отсутствия симметрии. В природе и, в частности, в живой природе симметрия не абсолютна и всегда содержит некоторую степень асимметрии. Например, симметричные листья растений при сложении пополам в точности не совпадают.

У биологических объектов встречаются следующие типы симметрии:

  • сферическая симметрия вращений в трёхмерном пространстве на произвольные углы.
  • аксиальная симметрия (радиальная симметрия , симметрия вращения неопределённого порядка) - симметричность относительно поворотов на произвольный угол вокруг какой-либо оси.
    • симметрия вращения n-го порядка - симметричность относительно поворотов на угол 360°/n вокруг какой-либо оси.
  • двусторонняя (билатеральная) симметрия - симметричность относительно плоскости симметрии (симметрия зеркального отражения).
  • трансляционная симметрия - симметричность относительно сдвигов пространства в каком-либо направлении на некоторое расстояние (её частный случай у животных - метамерия (биология)).
  • триаксиальная асимметрия - отсутствие симметрии по всем трём пространственным осям.

Радиальная симметрия

Обычно через ось симметрии проходят две или более плоскости симметрии. Эти плоскости пересекаются по прямой - оси симметрии. Если животное будет вращаться вокруг этой оси на определённый градус, то оно будет отображаться само на себе (совпадать само с собой). Таких осей симметрии может быть несколько (полиаксонная симметрия) или одна (монаксонная симметрия). Полиаксонная симметрия распространена среди протистов (например, радиолярий).

Как правило, у многоклеточных животных два конца (полюса) единственной оси симметрии неравноценны (например, у медуз на одном полюсе (оральном) находится рот, а на противоположном (аборальном) - верхушка колокола. Такая симметрия (вариант радиальной симметрии) в сравнительной анатомии называется одноосно-гетеропольной. В двухмерной проекции радиальная симметрия может сохраняться, если ось симметрии направлена перпендикулярно к проекционной плоскости. Иными словами, сохранение радиальной симметрии зависит от угла наблюдения.

Радиальная симметрия характерна для многих стрекающих , а также для большинства иглокожих . Среди них встречается так называемая пентасимметрия, базирующаяся на пяти плоскостях симметрии. У иглокожих радиальная симметрия вторична: их личинки двустороннесимметричны, а у взрослых животных наружная радиальная симметрия нарушается наличием мадрепоровой пластинки.

Кроме типичной радиальной симметрии существует двулучевая радиальная симметрия (две плоскости симметрии, к примеру, у гребневиков). Если плоскость симметрии только одна, то симметрия билатеральная (такую симметрию имеют животные из группы Bilateria ).

Кристаллографическая точечная группа симметрии - это точечная группа симметрии , которая описывает макросимметрию кристалла . Поскольку в кристаллах допустимы оси (поворотные и несобственного вращения) только 1, 2, 3, 4 и 6 порядков, из всего бесконечного числа точечных групп симметрии только 32 относятся к кристаллографическим.

Анизотропия (от др.-греч. ἄνισος - неравный и τρόπος - направление) - различие свойств среды (например, физических : упругости , электропроводности , теплопроводности , показателя преломления , скорости звука или света и др.) в различных направлениях внутри этой среды; в противоположность



Определение симметрии;

  • Определение симметрии;

  • Центральная симметрия;

  • Осевая симметрия;

  • Симметрия относительно плоскости;

  • Симметрия вращения;

  • Зеркальная симметрия;

  • Симметрия подобия;

  • Симметрия растений;

  • Симметрия животных;

  • Симметрия в архитектуре;

  • Человек – существо симметричное?

  • Симметрия слов и чисел;


СИММЕ́ТРИЯ

  • СИММЕ́ТРИЯ - соразмерность, одинаковость в расположении частей чего-нибудь по противоположным сторонам от точки, прямой или плоскости.

  • (Толковый словарь Ожегова)

  • Итак, геометрический объект считается симметричными, если с ним можно сделать что-то такое, после чего он останется неизменным.


О О О называется центром симметрии фигуры .

  • Фигура называется симметричной относительно точки О , если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры .



окружность и параллелограмм центр окружности ). График нечётной функции

    Примерами фигур, обладающих центральной симметрией, являются окружность и параллелограмм . Центром симметрии окружности является центр окружности , а центром симметрии параллелограмма – точка пересечения его диагоналей . Любая прямая также обладает центральной симметрией (любая точка прямой является её центром симметрии ). График нечётной функции симметричен относительно начала координат.

  • Примером фигуры, не имеющей центра симметрии, является произвольный треугольник .


а а a называется осью симметрии фигуры .

  • Фигура называется симметричной относительно прямой а , если для каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре. Прямая a называется осью симметрии фигуры .



У неразвернутого угла одна ось симметрии биссектриса угла одну ось симметрии три оси симметрии по две оси симметрии , а квадрат- четыре оси симметрии относительно оси ординат .

    У неразвернутого угла одна ось симметрии - прямая, на которой расположена биссектриса угла . Равнобедренный треугольник имеет также одну ось симметрии , а равносторонний треугольник- три оси симметрии . Прямоугольник и ромб, не являющиеся квадратами, имеют по две оси симметрии , а квадрат- четыре оси симметрии . У окружности их бесконечно много. График чётной функции при построении симметричен относительно оси ординат .

  • Имеются фигуры, у которых нет ни одной оси симметрии. К таким фигурам относятся параллелограмм , отличный от прямоугольника, разносторонний треугольник .



Точки А и А1 а а АА1 и перпендикулярна а считается симметричной самой себе

    Точки А и А1 называются симметричными относительно плоскости а (плоскость симметрии), если плоскость а проходит через середину отрезка АА1 и перпендикулярна к этому отрезку. Каждая точка плоскости а считается симметричной самой себе . Две фигуры называются симметричными относительно плоскости (или зеркально-симметричными относительно), если они состоят из попарно симметричных точек. Это значит, что для каждой точки одной фигуры симметричная ей (относительно) точка лежит в другой фигуре.


Тело (или фигура) обладает симметрией вращения , если при повороте на угол 360º/n, где n целое число полностью совмещается

  • Тело (или фигура) обладает симметрией вращения , если при повороте на угол 360º/n, где n целое число , около некоторой прямой АВ (ось симметрии) оно полностью совмещается со своим исходным положением.

  • Радиальная симметрия – форма симметрии, сохраняющаяся при вращении объекта вокруг определённой точки или прямой. Часто эта точка совпадает с центром тяжести объекта, то есть той точкой, в которой пересекается бесконечное количество осей симметрии. Подобными объектами могут быть круг, шар, цилиндр или конус .



Зеркальная симметрия связывает любой

    Зеркальная симметрия связывает любой предмет и его отражение в плоском зеркале . Говорят, что одна фигура (или тело) зеркально симметрично другой, если вместе они образуют зеркально симметричную фигуру (или тело). Симметрично зеркальные фигуры при всём своём сходстве существенно отличаются друг от друга. Две зеркально симметричные плоские фигуры всегда можно наложить друг на друга. Однако для этого необходимо вывести одну из них (или обе) из их общей плоскости.


Симметрия подобия матрешки .

  • Симметрия подобия представляют собой своеобразные аналоги предыдущих симметрий с той лишь разницей, что они связаны с одновременным уменьшением или увеличением подобных частей фигуры и расстояний между ними . Простейшим примером такой симметрии являются матрешки .

  • Иногда фигуры могут обладать разными типами симметрии. Например, поворотной и зеркальной симметрией обладают некоторые буквы: Ж , Н , М , О , А .


  • Существует много других видов симметрий, имеющих абстрактный характер. Например:

  • Перестановочная симметрия , которая состоит в том, что если тождественные частицы поменять местами, то никаких изменений не происходит;

  • Калибровочные симметрии связаны с изменением масштаба . В неживой природе симметрия прежде всего возникает в таком явлении природы, как кристаллы , из которых состоят практически все твердые тела. Именно она и определяет их свойства. Самый очевидный пример красоты и совершенства кристаллов - это известная всем снежинка .



    С симметрией мы встречаемся везде: в природе, технике, искусстве, науке. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Принципы симметрии играют важную роль в физике и математике, химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке. Законы природы также подчиняются принципам симметрии.


осью симметрии .

  • Многие цветы обладают интересным свойством: их можно повернуть так, что каждый лепесток займёт положение соседнего, цветок же совместится с самим собой. Такой цветок обладает осью симметрии .

  • Винтовая симметрия наблюдается в расположении листьев на стеблях большинства растений. Располагаясь винтом по стеблю, листья как бы раскидываются во все стороны и не заслоняют друг друга от света, крайне необходимого для жизни растений.

  • Билатеральной симметрией обладают также органы растений, например, стебли многих кактусов. В ботанике часто встречаются радиально симметрично построенные цветы.


разделяющей линии.

  • Под симметрией у животных понимают соответствие в размерах, форме и очертаниях, а также относительное расположение частей тела, находящихся на противоположных сторонах разделяющей линии.

  • Основными типами симметрии являются радиальная (лучевая) – ей обладают иглокожие, кишечнополостные, медузы и др.; или билатеральная (двусторонняя) - можно сказать, что каждое животное (будь то насекомое, рыба или птица) состоит из двух половин – правой и левой.

  • Сферическая симметрия имеет место у радиолярий и солнечников. Любая плоскость, проведённая через центр, делит животное на одинаковые половинки.


  • Симметрия сооружения связывается с организацией его функций. Проекция плоскости симметрии - ось здания - определяет обычно размещение главного входа и начало основных потоков движения.

  • Каждая деталь в симметричной системе существует как двойник своей обязательной паре , расположенной по другую сторону оси, и благодаря этому она может рассматриваться лишь как часть целого.

  • Наиболее распространена в архитектуре зеркальная симметрия . Ей подчинены постройки Древнего Египта и храмы античной Греции, амфитеатры, термы, базилики и триумфальные арки римлян, дворцы и церкви Ренессанса, равно как и многочисленные сооружения современной архитектуры.


акценты

  • Для лучшего отражения симметрии на сооружениях ставятся акценты - особо значимые элементы (купола, шпили, шатры, парадные входы и лестницы, балконы и эркеры).

  • Для оформления убранства архитектуры применяют орнамент – ритмично повторяющийся рисунок, основанный на симметричной композиции его элементов и выражаемый линией, цветом или рельефом. Исторически сложилось несколько типов орнаментов на основе двух источников – природных форм и геометрических фигур.

  • Но архитектор – прежде всего художник. И потому даже самые «классические» стили чаще использовали дисимметрию – нюансное отклонение от чистой симметрии или асимметрию – нарочито несимметричное построение.


  • Никто не усомнится, что внешне человек построен симметрично: левой руке всегда соответствует правая и обе руки совершенно одинаковы. Но сходство между нашими руками, ушами, глазами и другими частями тела такое же, как между предметом и его отражением в зеркале.



правая его половина грубые черты , присущие мужскому полу. Левая половина

    Многочисленные измерения параметров лица у мужчин и женщин показали, что правая его половина по сравнению с левой, имеет более выраженные поперечные размеры, что придает лицу более грубые черты , присущие мужскому полу. Левая половина лица имеет более выраженные продольные размеры, что придает ему плавность линий и женственность . Этот факт объясняет преимущественное желание лиц женского пола позировать перед художниками левой стороной лица, а лиц мужского пола - правой.


Палиндром

  • Палиндром (от гр. Palindromos – бегущий обратно) – это некоторый объект, в котором задана симметрия составляющих от начала к концу и от конца к началу. Например, фраза или текст.

  • Прямой текст палиндрома, читающийся в соответствии с нормальным направлением чтения в данной письменности (обычно слева направо), называется прямоходом , обратный – ракоходом или реверсом (справа налево). Некоторые числа также обладают симметрией.

Понимать, что такое симметрия в математике, необходимо, чтобы в дальнейшем освоить базовые и продвинутые темы алгебры, геометрии. Немаловажно это и для понимания черчения, архитектуры, правил построения рисунка. Несмотря на тесную связь с самой точной наукой - математикой, симметрия важна и для артистов, художников, творцов, и для тех, кто занимается научной деятельностью, причем в любой области.

Общая информация

Не только математика, но и естественные науки во многом основаны на понятии симметрии. Более того, оно встречается в повседневной жизни, является одним из базовых для природы нашей Вселенной. Разбираясь, что такое симметрия в математике, необходимо упомянуть, что существует несколько типов этого явления. Принято говорить о таких вариантах:

  • Двустороннем, то есть такой, когда симметрия зеркальная. Это явление в ученой среде принято именовать «билатеральным».
  • Эн-ном порядке. Для этого понятия ключевое явление - это угол поворота, вычисляемый разделением 360 градусов на некоторую заданную величину. Кроме того, заранее определяется ось, вокруг которой эти повороты совершаются.
  • Падиальная, когда явление симметрии наблюдают, если повороты совершатся произвольно на некоторый случайный по величине угол. Ось также выбирается независимым образом. Для описания такого явления применяют группу SO(2).
  • Сферическая. В этом случае речь идет о трех измерениях, в которых объект вращают, выбирая произвольные углы. Выделяют конкретный случай изотропии, когда явление становится локальным, свойственным среде либо пространству.
  • Вращательная, соединившая в себе две описанные ранее группы.
  • Лоренц-инвариативная, когда имеют место произвольные вращения. Для этого типа симметрии ключевым понятием становится «пространство-время Минковского».
  • Супер, определяемая как замена бозонов фермионами.
  • Высшая, выявляемая в ходе группового анализа.
  • Трансляционная, когда имеются сдвиги пространства, для которых ученые выявляют направление, расстояние. На основе полученных данных проводят сравнительный анализ, позволяющий выявить симметрию.
  • Калибровочная, наблюдаемая в случае независимости калибровочной теории при соответствующих преобразованиях. Здесь особенное внимание обращают на теорию поля, в том числе фокусируются на идеях Янга-Миллса.
  • Кайно, принадлежащая к классу электронных конфигураций. О том, что представляет собой такая симметрия, математика (6 класс) представления не имеет, ведь это наука высшего порядка. Явление обусловлено вторичной периодичностью. Было открыто в ходе научной работы Е. Бирона. Терминология введена С. Щукаревым.

Зеркальная

Во время обучения в школе учащихся практически всегда просят сделать работу «Симметрия вокруг нас» (проект по математике). Как правило, ее рекомендуют к выполнению в шестом классе обычной школы с общей программой преподавания предметов. Чтобы справиться с проектом, необходимо сперва ознакомиться с понятием симметрии, в частности, выявить, что представляет собой зеркальный тип как один из базовых и наиболее понятных для детей.

Для выявления явления симметрии рассматривают конкретную геометрическую фигуру, а также выбирают плоскость. Когда говорят о симметричности рассматриваемого объекта? Сперва на нем выбирают некоторую точку, а затем находят для нее отражение. Между ними двумя проводят отрезок и вычисляют, под каким углом к выбранной ранее плоскости он проходит.

Разбираясь, что такое симметрия в математике, помните, что выбранная для выявления этого явления плоскость будет называться именно плоскостью симметрии и никак иначе. Проведенный отрезок должен пересекаться с ней под прямым углом. Расстояние от точки до этой плоскости и от нее до второй точки отрезка должно быть равным.

Нюансы

О чем еще интересном можно узнать, разбирая такое явление, как симметрия? Математика (6 класс) рассказывает, что две фигуры, считающиеся симметричными, совсем не обязательно идентичны друг другу. Понятие равности существует в узком и широком смысле. Так вот, симметричные объекты в узком - не одно и то же.

Какой пример из жизни можно привести? Элеметарный! Что скажете насчет наших перчаток, варежек? Мы все привыкли их носить и знаем, что терять нельзя, ведь вторую такую в пару уже не подобрать, а значит, покупать придется обе заново. А все почему? Потому что парные изделия, хотя и симметричны, но рассчитаны на левую и правую руку. Это - типичный пример зеркальной симметрии. Что касается равности, то такие объекты признают «зеркально равными».

А что с центром?

Рассматривать центральную симметрию начинают с определения свойств тела, применительно к которому необходимо оценить явление. Чтобы назвать его симметричным, сперва выбирают некоторую точку, расположенную по центру. Далее выбирают точку (условно назовем ее А) и ищут для нее парную (условно обозначим Е).

При определении симметричности точки А и Е соединяют между собой прямой линией, захватывающей центральную точку тела. Далее измеряют получившуюся прямую. Если отрезок от точки А до центра объекта равен отрезку, отделяющему центр от точки Е, можно говорить о том, что найден центр симметрии. Центральная симметрия в математике - одно из ключевых понятий, позволяющих далее развивать теории геометрии.

А если вращаем?

Разбирая, что такое симметрия в математике, нельзя упустить из внимания понятие вращательного подтипа этого явления. Для того чтобы разобраться с терминами, берут тело, имеющее центральную точку, а также определяют целое число.

В ходе эксперимента заданное тело вращают на угол, равный результату деления 360 градусов на выбранный целый показатель. Для этого необходимо знать, что такое (2 класс, математика, школьная программа). Эта ось - прямая, соединяющая две выбранные точки. О симметрии вращения можно говорить, если при выбранном угле поворота тело будет находиться в том же положении, как и до проведения манипуляций.

В том случае, когда натуральным числом было выбрано 2, и обнаружено явление симметрии, говорят, что определена осевая симметрия в математике. Такая характерна для ряда фигур. Типичный пример: треугольник.

О примерах подробнее

Практика многолетнего преподавания математики и геометрии в средней школе показывает, что проще всего с явлением симметрии разобраться, объясняя его на конкретных примерах.

Для начала рассмотрим сферу. Для такого тела одновременно свойственны явления симметричности:

  • центральной;
  • зеркальной;
  • вращательной.

В качестве главной выбирают точку, расположенную точно по центру фигуры. Чтобы подобрать плоскость, определяют большой круг и словно бы «нарезают» его на пласты. О чем говорит математика? Поворот и центральная симметрия в случае шара - понятия взаимосвязанные, при этом диаметр фигуры будет служить осью для рассматриваемого явления.

Еще один наглядный пример - круглый конус. Для этой фигуры свойственна В математике и архитектуре это явление нашло широкое теоретическое и практическое применение. Обратите внимание: в качестве оси для явления выступает ось конуса.

Наглядно демонстрирует изучаемое явление Этой фигуре свойственна зеркальная симметрия. Плоскостью выбирают «срез», параллельный основаниям фигуры, удаленный от них на равные промежутки. Создавая геометрический, начертательный, архитектурный симметрия важна не меньше, чем точным и начертательным наукам), помните о применимости на практике и пользе при планировании несущих элементов явления зеркальности.

А если более интересные фигуры?

О чем нам может рассказать математика (6 класс)? Центральная симметрия есть не только в таком простом и понятном объекте, как шар. Она свойственна и более интересным и сложным фигурам. Например, таков параллелограмм. Для такого объекта центральной точкой становится та, в которой пересекаются его диагонали.

А вот если рассматривать равнобедренную трапецию, то это будет фигура с осевой симметрией. Выявить ее можно в том случае, если правильно выбрать ось. Тело симметрично относительно линии, перпендикулярной основанию и пересекающей его ровно посередине.

Симметрия в математике и архитектуре обязательно учитывает ромб. Эта фигура примечательна тем, что одновременно объединяет в себе два типа симметричности:

  • осевой;
  • центральный.

В качестве оси необходимо выбрать диагональ объекта. В том месте, где диагонали ромба пересекаются, расположен его центр симметрии.

О красоте и симметрии

Формируя проект математике, симметрия для которого была бы ключевой темой, обычно в первую очередь вспоминают мудрые слова великого ученого Вейля: «Симметрия - это идея, которую долгие века пытается понять обычный человек, ведь именно она создает совершенную красоту через уникальный порядок».

Как известно, иные предметы кажутся большинству прекрасными, в то время как другие отталкивают, даже если в них нет очевидных изъянов. Почему так происходит? Ответ на этот вопрос показывает взаимосвязь архитектуры и математики в симметрии, ведь именно это явление и становится основой оценки предмета как эстетически привлекательного.

Одна из самых красивых женщин на нашей планете - это супермодель Кисти Тарликтон. Она уверена, что к успеху пришла в первую очередь благодаря уникальному явлению: ее губы симметричны.

Как известно, природа и тяготеет к симметрии, и не может ее достичь. Это не общее правило, но взгляните на окружающих людей: в человеческих лицах практически не найти абсолютной симметрии, хотя очевидно стремление к ней. Чем более симметрично лицо собеседника, тем он кажется красивее.

Как симметрия стала идеей о прекрасном

Удивительно, что на симметричности основано восприятие человеком красоты окружающего его пространства и объектов в нем. Долгие века люди стремятся понять, что же кажется прекрасным, а что отталкивает нелицеприятностью.

Симметричность, пропорции - вот то, что помогает визуально воспринимать некоторый объект и оценивать его положительно. Все элементы, части должны быть сбалансированы и находиться в разумных пропорциях друг с другом. Уже давно выяснили, что асимметричные предметы нравятся людям гораздо меньше. Все это связывают с понятием «гармония». Над тем, почему это так важно для человека, с древних пор ломали головы мудрецы, артисты, художники.

Стоит приглядеться к геометрическим фигурам, и явление симметрии станет очевидным и доступным для понимания. Наиболее типичные симметричные явления в окружающем нас пространстве:

  • горные породы;
  • цветы и листья растений;
  • парные наружные органы, присущие живым организмам.

Описанные явления имеют источником саму природу. А вот что можно увидеть симметричного, приглядевшись к изделиям человеческих рук? Заметно, что люди тяготеют к созданию именно такового, если стремятся сделать нечто красивое или функциональное (или и такое, и такое одновременно):

  • узоры и орнаменты, популярные с древних времен;
  • строительные элементы;
  • элементы конструкций техники;
  • рукоделие.

О терминологии

«Симметрия» - слово, пришедшее в наш язык от древних греков, впервые обративших на это явление пристальное внимание и попытавшихся изучить его. Термин обозначает наличие некоторой системы, а также гармоничное сочетание частей объекта. Переводя слово «симметрия», можно подобрать в качестве синонимов:

  • пропорциональность;
  • одинаковость;
  • соразмерность.

С древних пор симметрия является важным понятием для развития человечества в разных областях и отраслях. Народы с древности имели общие представления об этом явлении, преимущественно рассматривая его в широком смысле. Симметрия обозначала гармоничность и уравновешенность. В наше время терминологию преподают в обычной школе. Например, что такое (2 класс, математика) детям рассказывает учительница на обычном занятии.

Как идея это явление зачастую становится начальным посылом научных гипотез и теорий. Особенно популярно это было в прежние столетия, когда по всему миру властвовала идея математической гармонии, присущей самой системе мироздания. Знатоки тех эпох были убеждены, что симметричность есть проявление божественной гармонии. А вот в Древней Греции философы уверяли, что симметрична вся Вселенная, и все это базировалось по постулате: «Симметрия прекрасна».

Великие греки и симметрия

Симметричность будоражила умы известнейших ученых Древней Греции. До наших дней дошли свидетельства того, что Платон призывал отдельно восхищаться По его мнению, такие фигуры - это олицетворения стихий нашего мира. Существовала следующая классификация:

Во многом именно из-за этой теории принято именовать правильные многогранники платоновыми телами.

А вот терминологию ввели еще раньше, и тут не последнюю роль сыграл скульптор Поликлет.

Пифагор и симметрия

В период жизни Пифагора и в последующем, когда его учение переживало свой расцвет, явление симметрии удалось четко оформить. Именно тогда симметричность подверглась научному анализу, давшему важные для практического применения результаты.

Согласно полученным выводам:

  • Симметрия базируется на понятиях пропорций, однообразности и равенства. При нарушении того или иного понятия фигура становится менее симметричной, постепенно переходя в полностью асимметричную.
  • Существует 10 противоположных пар. Согласно учению, симметрия представляет собой явление, сводящее в единое противоположности и тем самым формирующее вселенную в целом. Этот постулат долгие века оказывал сильное влияние на ряд наук как точных, так и философских, а также естественных.

Пифагор и его последователи выделяли «совершенно симметричные тела», к которым причисляли удовлетворяющие условиям:

  • каждая грань - многоугольник;
  • грани встречаются в углах;
  • фигура должна иметь равные стороны и углы.

Именно Пифагор первым сказал, что таковых тел существует всего лишь пять. Это великое открытие положило начало геометрии и исключительно важно для современной архитектуры.

А вы хотите своими глазами увидеть самое прекрасное явление симметрии? Поймайте зимой снежинку. Удивительно, но факт - это крошечный кусочек падающего с неба льда имеет не только крайне сложную кристаллическую структуру, но еще и идеально симметричен. Рассмотрите ее внимательно: снежинка действительно прекрасна, а ее сложные линии завораживают.

от греч. symmetria - соразмерность) - равномерное, сходное расположение элементов формы какого-нибудь искусственного предмета; в широком смысле слова - инвариантность (неизменность) структуры, формы материального объекта (системы объектов) относительно его преобразования, в силу чего симметрия связана с сохранением тех или иных величин, характеризующих данный объект (систему), например, энергии, импульса и т. д. (теорема Нетер в теоретической физике). (См. также Сингонии, Кристаллы, Кристаллография).

Отличное определение

Неполное определение ↓

Симметрия (symmetria)

Упорядочение целого есть, по Платону, превращение целого в гармонию, а определенное строение гармонии есть симметрия, пропорция, ритм.

а) Платон не дал достаточно ясного и развитого определения симметрии, хотя это понятие весьма важно для эстетики. Его высказывания о симметрии (Phileb, 23с - 27d)., к сожалению, чересчур общи. Они сводятся примерно к следующему: представим себе какой-нибудь пустой фон, на котором ничего не нарисовано. Нарисуем на этом фоне фигуру - круг, квадрат, треугольник, прямоугольник и т. д. Такая фигура обозначается при помощи прямой или кривой линии. Допустим далее, что мы не рассматриваем взятый нами фон и нарисованную фигуру отдельно друг от друга, а как нечто целое. Такое представление правильно, потому что фигура так или иначе заняла и подчинила себе определенную часть фона. Что же это за фигура, какой она имеет конкретный вид? Ее вид может быть красивый или некрасивый, соразмерный или несоразмерный, симметричный и несимметричный. Придали ли мы фигуре тот именно вид, который хотели, или это нам не удалось? Наше эстетическое чувство подскажет, хороша ли эта фигура или нехороша, стройна она или не стройна, прекрасна или уродлива, и т. д. Вот это простейшее и общечеловеческое рассуждение как раз и надо иметь в виду, чтобы понять содержание трудного платоновского диалога «Филеб».

Вместо того, чтобы говорить о фоне, Платон вводит понятие беспредельного. Конечно, не сразу станут понятными слова Платона о том, что беспредельное «может» быть и как угодно велико и как угодно мало, что оно пусто и ничего в себе не содержит. Итак, наш фон есть платоновское беспредельное. Далее, на нашем фоне мы чертим некую фигуру, т. е. ограничиваем некоторую часть фона. Эту фигуру Платон называет не очень понятным термином - «предел». Предел - это в данном случае просто ограниченность известной части фона. Но наш чертеж, ограничивший часть фона от прочего фона, создал именно определенную фигуру. Эту фигуру Платон именует не совсем понятным термином - «смешение» беспредельного и предела. Это не есть какое бы то ни было смешение каких бы то ни было разных предметов. Этот термин можно сравнить с тем, как воспринимается чертеж фигуры, когда эта фигура, выделяясь на каком-либо фоне, действительно «смешивается» с этим фоном, но ясно, что это понятие «смешение» специфично. Еще труднее и непонятнее термин Платона, употребляемый им для обозначения того, какая же именно фигура у нас получилась, т. е. какую именно идею мы хотели воплотить в чертеже, идею ли, например, треугольника или идею круга, или вообще какую-нибудь определенную идею. Платон назвал это «причиной смешения». Слово «причина» здесь либо неудачное, либо мы просто не сумели перевести соответствующий греческий термин. Ясно, однако, что фигура эта совершенно определенна. Это не фигура вообще, а треугольник, прямоугольник, круг и т. д. Та ли это фигура, которую мы хотели начертить? Здесь появляется новая ступень в понимании чертежа, которую Платон называет сразу тремя терминами: «симметрией», «истиной» и «красотой». Конечно, полученная нами фигура.либо симметрична, либо несимметрична, либо она соответствует нашей идее и потому истинна, либо мы в чем-нибудь ошиблись при чертеже, и тогда она не истинна, и она либо красива, либо некрасива. Это тоже ясно. Но слишком общий характер этих терминов и отсутствие всяких рассуждении об их взаимозависимости делают их не вполне ясными, почему в комментариях античных авторов на «Филеба» Платона по этому поводу было немало споров. Следовательно, симметрия по «Филебу» Платона, предполагает, по крайней мере, четыре разных понятия - беспредельного, предела, смешения того и другого и причины этого смешения. И, кроме того, даже и в этом случае понятие симметрии еще не очень ясно отмежевано от понятия истины и красоты. Если иметь в виду любовь Платона к архитектонике понятий и к их схематизму, разделение красота, истина и симметрия есть не что иное, как повторение первоначальной диалектики беспредельного, предела и смешения на высшей ступени. Наиболее интересно и ближе всего подходит к нашему пониманию эстетики рассуждение об удовольствии, или наслаждении, и разумности. Удовольствие, или наслаждение, -это что-то беспредельное, так как оно, взятое само по себе, ненасытно, вечно стремится как бы слепо и не имеет никакого предела. Разумность, ум, или интеллект, наоборот, всегда основывается на известной системе, на тех или иных точных разграничениях, на воздержании от наслаждений и потому является твердым и определенным принципом, «пределом». Если под красотой Платон понимает синтез наслаждения и разумности, т. е. как бы внутреннюю сторону соразмерности симметрии, то он очевидно, предвидит весьма распространенные впоследствии европейские учения о соединении удовольствия и ума в красоте. Истинное понятие красоты всегда включает не только удовольствие, но и разумную идейность. Учение Платона о симметрии оказывается не так уж наивным и общим; оно в некоторой степени отражает и реальную эстетическую действительность и реальное ее восприятие.

б) Мы исходили из того, что эстетическая и всякая иная терминология вырабатывалась у Платона постепенно, иной раз с большими усилиями и часто принимала неясные и запутанные формы. Однако изучать эстетику Платона нельзя на основании только некоторых материалов «Филеба». Необходимо обратить внимание на употребление термина «симметрия» и в других диалогах.

Например, интересно следующее в «Законах» (Legg., II 668 а): «Ведь равное является равным и симметричное (symmetron) симметричным не потому, что так нравится или так по вкусу кому-либо, но мерилом здесь является, по преимуществу, истина, а не другое». В данном случае «симметрия» уже предполагает «истину», так что, по крайней мере, в этом пункте мы были правы в пашей догадке относительно места «симметрии» в «Филебе». К «Филебу» примыкает и суждение в «Законах» (Legg., VI 773 а): «Равное и соразмерное в отношении добродетели бесконечно выше чрезмерного (acratoy)». Эти примеры показывают также, что Платон недаром поместил свою «симметрию» в такой общей области, как область творческого смешения предела и беспредельного. Указанные два текста весьма слабо подчеркивают структурную сторону симметрии, так что «соразмерность» здесь можно понимать в самом широком смысле. Как «истина» и «красота» есть какое-то соответствие (т. е. взаимосоответствие предела и беспредельного), таким же соответствием является и симметрия.

О структурности симметрии читаем: «Храм самого Посейдона имел одну стадию в длину три плефра в ширину и пропорционально (symmetron) тому на вид высоту» (Critias, 116 d). Что тут значит симметрия, нам неясно. Но ясно, что имеется в виду какое-то структурное соответствие. С такого же рода принципом структурности можно столкнуться в «Софисте», где говорится об искажении предметов, образующихся вследствие перспективы:

«Если они [художники] создают истинную симметрию прекрасных предметов, то ты знаешь, что более высокое кажется меньше нижнего, а более низкое - больше, ввиду того, что первые бывают видимы нами издали, а последние вблизи... Так же не расстаются ли при таких обстоятельствах художники с истиной, когда образам, отделываемым ими, они придают не действительно прекрасные «размеры» (tas oysas simmetrias), но кажущиеся таковыми» (Soph., 235 е - 236 а). Здесь «симметрия» только намекает на структурность, на деле же она означает (как это и переведено) именно «размеры» или (если перевести также приставку этого слова) «совокупность размеров».

Приведем текст, где имеется в виду составленность из единиц длины, но без всякого структурного взаимоотношения этих длин: «Будучи равным, оно будет тех же мер [т. е. «из того же количества единиц меры»], с тем, чем оно будет равно... Если же оно больше или меньше, по сравнению с тем, чему оно соразмерно (xymmetron), то в отношении к меньшему оно будет иметь больше мер [больше размером], а в отношении к большему оно будет иметь меньше мер [меньше размером]... С чем же оно несоизмеримо (me symmetron), в отношении к тому оно будет один раз иметь меньшие меры, другой раз большие» (Parm., 140 b). Под «симметрией», очевидно, здесь понимается просто математическая соизмеримость, т. е. возможность нахождения единой меры измерения.

в) Для характеристики термина «симметрия» имеет важное значение текст из диалога Платона «Теэтет» (147d-148 а). Текст этот представляет значительные трудности с чисто филологической стороны. Идея его сводится к тому, что Платон выдвигает на первый план при изучении симметрии прямоугольники, где стороны измеряются определенным рациональным числом, а диагонали иррациональным. Взаимоотношение стороны и диагонали каждого такого прямоугольника создает особого рода симметрию, на основе которой, как это исследовано современными теоретиками архитектуры, античные мастера возводили храмовые постройки периода классики.

Рассуждение о симметрии из «Теэтета» не осталось без отклика также и в современной искусствоведческой литературе. А именно, Д. Хэмбидж в своем учении о динамической симметрии в архитектуре3 ссылается как раз на это место платоновского «Теэтета», хотя и не подвергает его специальному анализу. Он обосновывается на большом искусствоведческом и естественнонаучном материале и, между прочим, на анализе всех основных архитектурных элементов Парфенона (а также и других греческих храмов)4. Если иметь в виду терминологию «Теэтета», то наименование рассматриваемой у этого автора симметрии как «динамической» нужно считать весьма удачным.

Рассуждение о симметрии в «Теэтете» в своем существе не выходит за пределы «Филеба», но только конкретизирует его. Объединение «предела» и «беспредельного» в художественном образе достигается в «Теэтете» при помощи геометрического построения. Геометрия в диалоге «Теэтета» служит здесь тем телесным и практическим началом, при помощи которого Платон делает свои отвлеченные построения. С помощью геометрии Платон пытается перевести на научный язык практику античного изобразительного искусства (в данном случае архитектуры).

В понятии симметрии у Платона имеется довольно существенное расхождение с обычным пониманием в западно-европейской эстетике. Расхождение это больше всего заметно благодаря чересчур большому объему этого понятия у Платона. Теперь представляют симметрию.главным образом как наличие взаимно эквивалентных частей, расположенных вокруг некоего центра или оси. Платоновское же понятие симметрии сводилось к наличию взаимно эквивалентных частей при очень расширенном понимании «центра» или «оси». Тут мыслятся не только числовые и геометрические отношения, но и отношения любых сфер бытия и жизни вообще.

Больше всего, конечно, «симметрия» мыслится (как и все прочие эстетические формы) у Платона в отношении души и космоса. Как увидим, она свойственна уже и всем элементарным фигурам, из которых строится у Платона космос (Tim., 69 b), но особенно она фиксируется на живом теле и душе и во взаимоотношениях души и тела (Tim., 87 с). Можно сказать, симметрия обладает здесь столь же широким значением, что и в досократовской эстетике, но только в ней подчеркнут творческий момент, совершенно растворенный в космологическом и физическом представлении о мире у досократиков.

Отличное определение

Неполное определение ↓