Определить радиус вписанной окружности в треугольник. Формулы радиусов вписанных и описанных окружностей правильных многоугольников


Рассмотрим окружность, вписанную в треугольник (рис. 302). Напомним, что ее центр О помещается на пересечении биссектрис внутренних углрв треугольника. Отрезки ОА, ОВ, ОС, соединяющие О с вершинами треугольника ABC, разобьют треугольник на три треугольника:

АОВ, ВОС, СОА. Высота каждого из этих треугольников равна радиусу , и потому их площади выразятся как

Площадь всего треугольника S равна сумме этих трех площадей:

где - полупериметр треугольника. Отсюда

Радиус вписанной окружности равен отношению площади треугольника к его полупериметру.

Для получения формулы для радиуса описанной окружности треугольника докажем следующее предложение.

Теорем а: В любом треугольнике сторона равна диаметру описанной окружности, умноженному на синус противолежащего угла.

Доказательство. Рассмотрим произвольный треугольник ABC и описанную вокруг него окружность, радиус которой обозначим через R (рис. 303). Пусть А - острый угол треугольника. Проведем радиусы ОВ, ОС окружности и опустим из ее центра О перпендикуляр ОК на сторону ВС треугольника. Заметим, что угол а треугольника измеряется половиной дуги ВС, для которой угол ВОС является центральным углом. Отсюда видно, что . Поэтому из прямоугольного треугольника СОК находим , или , что и требовалось доказать.

Приведенный рис. 303 и рассуждение относятся к случаю острого угла треугольника; нетрудно было бы провести доказательство и для случаев прямого и тупого угла (читатель это проделает самостоятельно), но можно использовать теорему синусов (218.3). Так как должно быть откуда

Теорему синусов записывают также в. виде

и сравнение с формой записи (218.3) дает для

Радиус описанной окружности равен отношению произведения трех сторон треугольника к его учетверенной площади.

Задача. Найти стороны равнобедренного треугольника, если его вписанная и описанная окружности имеют соответственно радиусы

Решение. Напишем формулы, выражающие радиусы вписанной и описанной окружностей треугольника:

Для равнобедренного треугольника с боковой стороной и основанием площадь выражается формулой

или, сократив дробь на отличный от нуля множитель , будем иметь

что приводит к квадратному уравнению относительно

Оно имеет два решения:

Подставив вместо его выражения в любое из уравнений для или R, найдем окончательно два ответа к нашей задаче:

Упражнения

1. Высота прямоугольного треугольника, проведенная из вершины прямого угла, делнт гипотенузу в отношении Найти отношение каждого из катетов к гипотенузе.

2. Основания равнобедренной трапеции, описанной около окружности, равны а и b. Найти радиус окружности.

3. Две окружности касаются внешним образом. Их общие касательные наклонены к линии центров под углом 30°. Длина отрезка касательной между точками касания равна 108 см. Найти радиусы окружностей.

4. Катеты прямоугольного треугольника равны а и b. Найти площадь треугольника, сторонами которого служат высота и медиана данного треугольника, проведенные из вершины прямого угла, и отрезок гипотенузы между точками их пересечения с гипотенузой.

5. Стороны треугольника равны 13, 14, 15. Найти проекцию каждой из них на две остальные.

6. В треугольнике известны сторона и высоты Найти стороны b и с.

7. Известны две стороны треугольника и медиана Найти третью сторону треугольника.

8. Даны две стороны треугольника и угол а между ними: Найти радиусы вписанной и описанной окружностей.

9. Известны стороны треугольника а, b, с. Чему равны отрезки, на которые они разбиваются точками касания вписанной окружности со сторонами треугольника?

В данной статье речь пойдёт о том, как выразить площадь многоугольника, в который можно вписать окружность, через радиус этой окружности. Сразу стоит отметить, что не во всякий многоугольник можно вписать окружность. Однако, если это возможно, то формула, по которой вычисляется площадь такого многоугольника, становится очень простой. Дочитайте эту статью до конца или посмотрите прилагающийся видеоурок, и вы узнаете, как же выразить площадь многоугольника через радиус вписанной в него окружности.

Формула площади многоугольника через радиус вписанной окружности


Нарисуем многоугольник A 1 A 2 A 3 A 4 A 5 , не обязательно правильный, но такой, в который можно вписать окружность. Напомню, что вписанной называется окружность, которая касается всех сторон многоугольника. На рисунке это зелёная окружность с центром в точке O :

Мы взяли здесь для примера 5-угольник. Но на самом деле это не имеет существенного значения, поскольку дальнейшее доказательство справедливо и для 6-угольника и для 8-угольника и вообще для любого сколь угодно «угольника».

Если соединить центр вписанной окружности со всеми вершинами многоугольника, то он разобьётся на столько треугольников, сколько вершин в данном многоугольнике. В нашем случае: на 5 треугольников. Если же соединить точку O со всеми точками касания вписанной окружности со сторонами многоугольника, то получится 5 отрезков (на рисунке снизу это отрезки OH 1 , OH 2 , OH 3 , OH 4 и OH 5), которые равны радиусу окружности и перпендикулярны сторонам многоугольника, к которым они проведены. Последнее справедливо, поскольку радиус, проведенный в точку касания, перпендикулярен касательной:

Как же найти площадь нашего описанного многоугольника? Ответ прост. Нужно сложить площади всех полученных в результате разбиения треугольников:

Рассмотрим, чему равна площадь треугольника . На рисунке снизу он выделен жёлтым цветом:

Она равна половине произведения основания A 1 A 2 на высоту OH 1 , проведённую к этому основанию. Но, как мы уже выяснили, эта высота равна радиусу вписанной окружности. То есть формула площади треугольника принимает вид: , где r — радиус вписанной окружности. Аналогично находятся площади всех оставшихся треугольников. В результате искомая площадь многоугольника оказывается равна:

Видно, что во всех слагаемых этой суммы ест общий множитель , который можно вынести за скобки. В результате получится вот такое выражение:

То есть в скобках осталась просто сумма всех сторон многоугольника, то есть его периметр P . Чаще всего в этой формуле выражение заменяют просто на p и называют эту букву «полупериметром». В результате, окончательная формула принимает вид:

То есть площадь многоугольника, в который вписана окружность известного радиуса, равна произведению этого радиуса на полупериметр многоугольника. Это и есть тот результат, в которому мы стремились.

Отметит напоследок, что в треугольник, который является частным случаем многоугольника, всегда можно вписать окружность. Поэтому для треугольника эту формулу можно применять всегда. Для остальных многоугольников, с количеством сторон большим 3, сперва нужно убедиться, что в них можно вписать окружность. Если это так, можно смело использовать эту простую формулу и находить по ней площадь этого многоугольника.

Материал подготовил , Сергей Валерьевич

Окружность считается вписанной в границы правильного многоугольника, в случае, если лежит внутри него, касаясь при этом прямых, которые проходят через все стороны. Рассмотрим, как найти центр и радиус окружности. Центром окружности будет являться точка, в которой пересекаются биссектрисы углов многоугольника. Радиус рассчитывается: R=S/P; S – площадь многоугольника, Р – полупериметр окружности.

В треугольнике

В правильный треугольник вписывают лишь одну окружность, центр которой называется инцентром; он от всех сторон удалён на одинаковое расстояние и является местом пересечения биссектрис.

В четырёхугольнике

Часто приходится решать, как найти радиус вписанной окружности в эту геометрическую фигуру. Она должна быть выпуклой (если нет самопересечений). Окружность вписать в неё можно только в случае равенства сумм противоположных сторон: AB+CD=BC+AD.

При этом центр вписанной окружности, середины диагоналей, расположены на одной прямой (согласно теореме Ньютона). Отрезок, концы которого находятся там, где пересекаются противоположные стороны правильного четырёхугольника, лежит на этой же прямой, называемой прямой Гаусса. Центром окружности будет точка, в которой пересекаются высоты треугольника с вершинами, диагоналями (по теореме Брокара).

В ромбе

Им считается параллелограмм с одинаковой длиной сторон. Радиус окружности, вписываемой в него, можно рассчитать несколькими способами.

  1. Чтобы сделать это правильно, найдите радиус вписанной окружности ромба, если известна площадь ромба, длина его стороны. Применяется формула r=S/(2Хa). К примеру, если площадь ромба составляет 200 мм кв., длина стороны 20 мм, то R=200/(2Х20), то есть, 5 мм.
  2. Известен острый угол одной из вершин. Тогда необходимо использовать формулоу r=v(S*sin(α)/4). Например, при площади в 150 мм и известном угле в 25 градусов, R= v(150*sin(25°)/4) ≈ v(150*0,423/4) ≈ v15,8625 ≈ 3,983 мм.
  3. Все углы в ромбе равны. В этой ситуации радиус окружности, вписанной в ромб, будет равен половине длины одной стороны данной фигуры. Если рассуждать по Евклиду, утверждающего, что сумма углов всякого четырёхугольника равна 360 градусов, то один угол будет равен 90 градусам; т.е. получится квадрат.

Окружность, вписанная в треугольник

Существование окружности, вписанной в треугольник

Напомним определение биссектрисы угла .

Определение 1 . Биссектрисой угла называют луч, делящий угол на две равные части.

Теорема 1 (Основное свойство биссектрисы угла) . Каждая точка биссектрисы угла находится на одном и том же расстоянии от сторон угла (рис.1).

Рис. 1

Доказательство D , лежащую на биссектрисе угла BAC , и DE и DF на стороны угла (рис.1). Прямоугольные треугольники ADF и ADE равны , поскольку у них равны острые углы DAF и DAE , а гипотенуза AD – общая. Следовательно,

DF = DE,

что и требовалось доказать.

Теорема 2 (обратная теорема к теореме 1) . Если некоторая , то она лежит на биссектрисе угла (рис.2).

Рис. 2

Доказательство . Рассмотрим произвольную точку D , лежащую внутри угла BAC и находящуюся на одном и том же расстоянии от сторон угла. Опустим из точки D перпендикуляры DE и DF на стороны угла (рис.2). Прямоугольные треугольники ADF и ADE равны , поскольку у них равны катеты DF и DE , а гипотенуза AD – общая. Следовательно,

что и требовалось доказать.

Определение 2 . Окружность называют окружностью, вписанной в угол , если она сторон этого угла.

Теорема 3 . Если окружность вписана в угол, то расстояния от вершины угла до точек касания окружности со сторонами угла равны.

Доказательство . Пусть точка D – центр окружности, вписанной в угол BAC , а точки E и F – точки касания окружности со сторонами угла (рис.3).

Рис.3

a , b , c – стороны треугольника, S –площадь,

r радиус вписанной окружности, p – полупериметр

.

Посмотреть вывод формулы

a боковая сторона равнобедренного треугольника , b – основание, r радиус вписанной окружности

a r радиус вписанной окружности

Посмотреть вывод формул

,

где

,

то, в случае равнобедренного треугольника, когда

получаем

что и требовалось.

Теорема 7 . Для справедливо равенство

где a – сторона равностороннего треугольника, r радиус вписанной окружности (рис. 8).

Рис. 8

Доказательство .

,

то, в случае равностороннего треугольника, когда

b = a,

получаем

что и требовалось.

Замечание . Я рекомендую вывести в качестве упражнения формулу для радиуса окружности, вписанной в равносторонний треугольник, непосредственно, т.е. без использования общих формул для радиусов окружностей, вписанных в произвольный треугольник или в равнобедренный треугольник.

Теорема 8 . Для прямоугольного треугольника справедливо равенство

где a , b – катеты прямоугольного треугольника, c гипотенуза , r радиус вписанной окружности.

Доказательство . Рассмотрим рисунок 9.

Рис. 9

Поскольку четырёхугольник CDOF является , у которого соседние стороны DO и OF равны, то этот прямоугольник – . Следовательно,

СВ = СF= r,

В силу теоремы 3 справедливы равенства

Следовательно, принимая также во внимание , получаем

что и требовалось.

Подборка задач по теме «Окружность, вписанная в треугольник».

1.

Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 5 и 3, считая от вершины, противолежащей основанию. Найдите периметр треугольника.

2.

3

В треугольнике ABC АС=4, ВС=3, угол C равен 90º. Найдите радиус вписанной окружности.

4.

Катеты равнобедренного прямоугольного треугольника равны 2+. Найдите радиус окружности, вписанной в этот треугольник.

5.

Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен 2. Найдите гипотенузу c этого треугольника. В ответе укажите с(–1).

Приведем ряд задач из ЕГЭ с решениями.

Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен . Найдите гипотенузу c этого треугольника. В ответе укажите .

Треугольник прямоугольный и равнобедренный. Значит, его катеты одинаковы. Пусть каждый катет равен . Тогда гипотенуза равна .

Запишем площадь треугольника АВС двумя способами:

Приравняв эти выражения, получим, что . Поскольку , получаем, что . Тогда .

В ответ запишем .

Ответ: .

Задача 2.

1. В произвольном две боковые стороны 10см и 6см (AB и BC). Найти радиусы описанной и вписанной окружностей
Задача решается самостоятельно с комментированием.

Решение:


В .

1) Найти:
2) Доказать:
и найти СK
3) Найти: радиусы описанной и вписанной окружностей

Решение:


Задача 6.

Р адиус окружности вписанной в квадрат равен . Найти радиус окружности описанной около этого квадрата. Дано :

Найти : ОС=?
Решение : в данном случае задачу можно решить, воспользовавшись либо теоремой Пифагора, либо формулой для R. Второй случай будет проще, поскольку формула для R выведена из теоремы.


Задача 7.

Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен 2. Найдите гипотенузу с этого треугольника. В ответе укажите .

S – площадь треугольника

Нам неизвестны ни стороны треугольника, ни его площадь. Обозначим катеты как х, тогда гипотенуза будет равна:

А площадь треугольника будет равна 0,5х 2 .

Значит


Таким образом, гипотенуза будет равна:

В ответе требуется записать:

Ответ: 4

Задача 8.

В треугольнике ABC АС = 4, ВС = 3, угол C равен 90 0 . Найдите радиус вписанной окружности.

Воспользуемся формулой радиуса окружности вписанной в треугольник:

где a, b, c – стороны треугольника

S – площадь треугольника

Две стороны известны (это катеты), можем вычислить третью (гипотенузу), также можем вычислить и площадь.

По теореме Пифагора:

Найдём площадь:

Таким образом:

Ответ: 1

Задача 9.

Боковые стороны равнобедренного треугольника равны 5, основание равно 6. Найдите радиус вписанной окружности.

Воспользуемся формулой радиуса окружности вписанной в треугольник:

где a, b, c – стороны треугольника

S – площадь треугольника

Известны все стороны, вычислим и площадь. Её мы можем найти по формуле Герона:


Тогда

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.