Решение уравнений, неравенств, систем с помощью графиков функций. Визуальный гид (2019)


Уравнения с параметрами по праву считаются одними из самых сложных задач в курсе школьной математики. Именно такие задачи и попадают из года в год в список заданий типа B и C на едином государственном экзамене ЕГЭ. Однако среди большого числа уравнений с параметрами есть те, которые с легкостью могут быть решены графическим способом. Рассмотрим этот метод на примере решения нескольких задач.

Найти сумму целых значений числа a, при которых уравнение |x 2 – 2x – 3| = a имеет четыре корня.

Решение.

Чтобы ответить на вопрос задачи, построим на одной координатной плоскости графики функций

y = |x 2 – 2x – 3| и y = a.

График первой функции y = |x 2 – 2x – 3| будет получен из графика параболы y = x 2 – 2x – 3 путем симметричного отображения относительно оси абсцисс той части графика, которая находится ниже оси Ox. Часть графика, находящаяся выше оси абсцисс, останется без изменений.

Проделаем это поэтапно. Графиком функции y = x 2 – 2x – 3 является парабола, ветви которой направлены вверх. Чтобы построить ее график, найдем координаты вершины. Это можно сделать по формуле x 0 = -b/2a. Таким образом, x 0 = 2/2 = 1. Чтобы найти координату вершины параболы по оси ординат, подставим полученное значение для x 0 в уравнение рассматриваемой функции. Получим, что y 0 = 1 – 2 – 3 = -4. Значит, вершина параболы имеет координаты (1; -4).

Далее нужно найти точки пересечения ветвей параболы с осями координат. В точках пересечения ветвей параболы с осью абсцисс значение функции равно нулю. Поэтому решим квадратное уравнение x 2 – 2x – 3 = 0. Его корни и будут искомыми точками. По теореме Виета имеем x 1 = -1, x 2 = 3.

В точках пересечения ветвей параболы с осью ординат значение аргумента равно нулю. Таким образом, точка y = -3 есть точка пересечения ветвей параболы с осью y. Полученный график изображен на рисунке 1.

Чтобы получить график функции y = |x 2 – 2x – 3|, отобразим симметрично относительно оси x часть графика, находящуюся ниже оси абсцисс. Полученный график изображен на рисунке 2.

График функции y = a – это прямая, параллельная оси абсцисс. Он изображен на рисунке 3. С помощью рисунка и находим, что графики имеют четыре общие точки (а уравнение – четыре корня), если a принадлежит интервалу (0; 4).

Целые значения числа a из полученного интервала: 1; 2; 3. Чтобы ответить на вопрос задачи, найдем сумму этих чисел: 1 + 2 + 3 = 6.

Ответ: 6.

Найти среднее арифметическое целых значений числа a, при которых уравнение |x 2 – 4|x| – 1| = a имеет шесть корней.

Начнем с построения графика функции y = |x 2 – 4|x| – 1|. Для этого воспользуемся равенством a 2 = |a| 2 и выделим полный квадрат в подмодульном выражении, написанном в правой части функции:

x 2 – 4|x| – 1 = |x| 2 – 4|x| - 1 = (|x| 2 – 4|x| + 4) – 1 – 4 = (|x |– 2) 2 – 5.

Тогда исходная функция будет иметь вид y = |(|x| – 2) 2 – 5|.

Для построения графика этой функции строим последовательно графики функций:

1) y = (x – 2) 2 – 5 – парабола с вершиной в точке с координатами (2; -5); (Рис. 1).

2) y = (|x| – 2) 2 – 5 – часть построенной в пункте 1 параболы, которая находится справа от оси ординат, симметрично отображается слева от оси Oy; (Рис. 2).

3) y = |(|x| – 2) 2 – 5| – часть построенного в пункте 2 графика, которая находится ниже оси x, отображается симметрично относительно оси абсцисс наверх. (Рис. 3).

Рассмотрим получившиеся рисунки:

Графиком функции y = a является прямая, параллельная оси абсцисс.

С помощью рисунка делаем вывод, что графики функций имеют шесть общих точек (уравнение имеет шесть корней), если a принадлежит интервалу (1; 5).

Это можно видеть на следующем рисунке:

Найдем среднее арифметическое целых значений параметра a:

(2 + 3 + 4)/3 = 3.

Ответ: 3.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

ОСР. «Решение уравнений с помощью графиков».
Задание:
1) Опорный конспект.
Графиком называется множество точек координатной плоскости, у которых значения x и y
связаны некоторой зависимостью и каждому значению x соответствует единственное значение y.
Графический способ ­ один из самых удобных и наглядных способов представления и анализа
информации.
На практике довольно часто оказывается полезным графический метод решения уравнений. Он
заключается в следующем: для решения уравнений f(x)=0 строят график функции y=f(x) и находят
абсциссы точек пересечения графика с осью Оx: эти абсциссы и являются корнями уравнения.
Алгоритм решения уравнений графическим способом
Чтобы решить графически уравнение вида f(х) = g(х), нужно:
1.Построить в одной координатной плоскости графики функции:
у = f(х) и у = g(х).
2. Найти точки пересечения этих графиков.
3. Указать абсциссу каждой из этих пересечения.
4. Записать ответ.
Довольно просто решать графически систему уравнений, так как каждое
уравнение системы на координатной плоскости представляет какую­ то
линию.
Построив графики этих уравнений и найдя координаты точек их
пересечения (если они существуют), мы получим искомое решение.
Графическое решение неравенств, сводится к отысканию таких точек x,
при которых один график лежит выше или ниже другого.
Примеры:
№ 1. Решите уравнение
x
4
5
x

точки
пересечени
я
графиков
функций

2.
Решите
является
рисунок
абсцисса

1
.
уравнения

5
см.
:
х

х

4
Решением
у
уи
Проверка

1
4
15


4
4
верно
Ответ
.1:

уравнение

x
3
3
x

Решением
уравнения
является
у

3

х
уи


3
х
см.
рисунок
абсцисса

.
2
точки
пересечени
я
графиков
функций
№3. Ре

1
3


Проверка
:
3


1

верно

1:

33
Ответ
.

шить уравнение
Решение: Построим графики функций
и y = x
Графики функций не пересекаются, и, значит, уравнение не имеет корней (см. рисунок).
Ответ: корней нет.
№4.Найти значение выражения х + у,если (х

является решением системы уравнений.
Решение:
влево.
­параллельный перенос на 1 единицу
­ параллельный перенос на 2 единицы влево.
= ­ 1, у
=1
+ у
=0.
х
х
Ответ: 0.

№5. Решите неравенство
Ответ: х>2.
>12 ­ 1,5х. №6. Решите неравенство
. Oтвет: х>0.
№7. Решить уравнение sinx + cosx=1. Построим графики функций y=sinx u y=1­cosx.(рисунок 5) Из
графика видно, что уравнение имеет 2 решения: х=2 п,где пЄZ и х= /2+2 k,где kЄZ.
π
π
π
2
sin x(
1
cos x(
6
4
2
1
2 
2
1
1
0
x
2
4
6
2 
№8.Решить уравнение: 3x = (х­1) 2 + 3
Решение: применяем функциональный метод решения уравнений:
т.к. данная система имеет единственное решение, то методом подбора находим х=1

Ответ: 1.
№9.Решить неравенство: сos x 1 + 3x
Решение:
Ответ: (
;
).
№10. Решить уравнение
В нашем случае функция
возрастает при х>0, а функция y = 3 – x убывает при
всех значениях х, в том числе и при х>0, значит,
уравнение
корня. Заметим, что при х = 2 уравнение обращается
в верное равенство, так как
имеет не более одного
.
Ответ: 2 .
2)Решить задание:
1)Есть ли корень у уравнения и если есть, то положительный он или отрицательный?
а)
; б)
, в) 6х =1/6, г)
.
2) Решить графическим методом уравнение
.
1
3
х







3
х
3) Решите графическим методом уравнения:
а)
б)
.
3
х
3
х
5

1
2
х

4)На рисунке изображен график функции y=f(x).
1) 1 2) 6 3) 7 4) 8
5) На каком из рисунков изображен график функции
?
у
log
x
1
2
1) у 2) у 3) у 4)
у
1 1 1
6) График какой функции изображен на рисунке?
1) у = 2х­1,5; 2) у = 2х – 2;
3) у = 2х – 3; 4) у = 2­х – 2.
7)График какой функции изображен на рисунке?

1) у = sinx; 2)
у

sin
 

x


6



; 3)
у

sin
 

x


3



; 4)
.
у

sin
x





6



8) На рисунке изображен график функций
y = f (x) и y = g (x), заданный на промежутке
[­5;6]. Укажите те значения х, для которых
выполняется неравенство g (x)
y
у 
)(xg
f (x) 1

1) [­5; 0] 2) [­5; 2]
0 1 x
3) [­2; 2] 4)
9) На рисунке изображен график функции y=f(x).
Найдите количество целых корней уравнения f(x)= 0.
1) 3 2) 4 3) 2 4) 1
)(xf
у 
10) На рисунке изображен график функции y=f(x).
Найдите количество целых корней уравнения f(x)+2= 0.
1) 3 2) 5 3) 4 4) 1

Графическое решение уравнений

Расцвет, 2009

Введение

Необходимость решать квадратные уравнения еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения вавилоняне умели решать еще около 2000 лет до н.э. Правило решения этих уравнений, изложенное в Вавилонских текстах, совпадает по существу с современными, однако неизвестно, каким образом дошли вавилоняне до этого правила.

Формулы решения квадратных уравнений в Европе были впервые изложены в «Книге абака», написанной в 1202 году итальянским математиком Леонардо Фибоначчи. Его книга способствовала распространению алгебраических знаний не только в Италии, но и Германии, Франции и других странах Европы.

Но общее правило решения квадратных уравнений, при всевозможных комбинациях коэффициентов b и c было сформулировано в Европе лишь в 1544 году М. Штифелем.

В 1591 году Франсуа Виет ввел формулы для решения квадратных уравнений.

В древнем Вавилоне могли решить некоторые виды квадратных уравнений.

Диофант Александрийский и Евклид , Аль-Хорезми и Омар Хайям решали уравнения геометрическими и графическими способами.

В 7 классе мы изучали функции у = С, у = kx , у = kx + m , у = x 2,у = – x 2, в 8 классе – у = √ x , у = |x |, у = ax 2 + bx + c , у = k / x . В учебнике алгебры 9 класса я увидела ещё не известные мне функции: у = x 3, у = x 4,у = x 2n, у = x - 2n, у = 3√x , (x a ) 2 + (у – b ) 2 = r 2 и другие. Существуют правила построения графиков данных функций. Мне стало интересно, есть ли ещё функции, подчиняющиеся этим правилам.

Моя работа заключается в исследовании графиков функций и графическом решении уравнений.

1. Какие бывают функции

График функции – это множество всех точек координатной плоскости, абсциссы которых равны значениям аргументов, а ординаты – соответствующим значениям функции.

Линейная функция задаётся уравнением у = kx + b , гдеk и b – некоторые числа. Графиком этой функции является прямая.

Функция обратной пропорциональности у = k / x , где k ¹ 0. График этой функции называется гиперболой.

Функция (x a ) 2 + (у – b ) 2 = r 2 , где а , b и r – некоторые числа. Графиком этой функции является окружность радиуса r с центром в т. А (а , b ).

Квадратичная функция y = ax 2 + bx + c где а, b , с – некоторые числа и а ¹ 0. Графиком этой функции является парабола.

Уравнение у 2 (a x ) = x 2 (a + x ) . Графиком этого уравнения будет кривая, называемая строфоидой.

/>Уравнение(x 2 + y 2 ) 2 = a (x 2 y 2 ) . График этого уравнения называется лемнискатой Бернулли.

Уравнение. График этого уравнения называется астроидой.

Кривая(x 2 y 2 – 2 a x) 2 =4 a 2 (x 2 + y 2 ) . Эта кривая называется кардиоидой.

Функции: у = x 3 – кубическая парабола, у = x 4, у = 1/ x 2.

2. Понятие уравнения, его графического решения

Уравнение – выражение, содержащее переменную.

Решить уравнение – это значит найти все его корни, или доказать, что их нет.

Корень уравнения – это число, при подстановке которого в уравнение получается верное числовое равенство.

Решение уравнений графическим способом позволяет найти точное или приближенное значение корней, позволяет найти количество корней уравнения.

При построении графиков и решении уравнений используются свойства функции, поэтому метод чаще называют функционально-графическим.

Для решения уравнение «делим» на две части, вводим две функции, строим их графики, находим координаты точек пересечения графиков. Абсциссы этих точек и есть корни уравнения.

3. Алгоритм построения графика функции

Зная график функции у = f (x ) , можно построить графики функций у = f (x + m ) ,у = f (x )+ l и у = f (x + m )+ l . Все эти графики получаются из графика функции у = f (x ) с помощью преобразования параллельного переноса: на m единиц масштаба вправо или влево вдоль оси x и на l единиц масштаба вверх или вниз вдоль оси y .

4. Графическое решение квадратного уравнения

На примере квадратичной функции мы рассмотрим графическое решение квадратного уравнения. Графиком квадратичной функции является парабола.

Что знали о параболе древние греки?

Современная математическая символика возникла в 16 веке.

У древнегреческих же математиков ни координатного метода, ни понятия функции не было. Тем не менее, свойства параболы были изучены ими подробно. Изобретательность античных математиков просто поражает воображение, – ведь они могли использовать только чертежи и словесные описания зависимостей.

Наиболее полно исследовал параболу, гиперболу и эллипс Аполоний Пергский , живший в 3 веке до н.э. Он же дал этим кривым названия и указал, каким условиям удовлетворяют точки, лежащие на той или иной кривой (ведь формул-то не было!).

Существует алгоритм построения параболы:

Находим координаты вершины параболы А (х0; у0): х =- b /2 a ;

y0=ахо2+вх0+с;

Находим ось симметрии параболы (прямая х=х0);

PAGE_BREAK--

Составляем таблицу значений для построения контрольных точек;

Строим полученные точки и построим точки им симметричные относительно оси симметрии.

1. По алгоритму построим параболу y = x 2 – 2 x – 3 . Абсциссы точек пересечения с осью x и есть корни квадратного уравнения x 2 – 2 x – 3 = 0.

Существует пять способов графического решения этого уравнения.

2. Разобьём уравнение на две функции: y = x 2 и y = 2 x + 3

3. Разобьём уравнение на две функции: y = x 2 –3 и y =2 x . Корни уравнения – абсциссы точек пересечения параболы с прямой.

4. Преобразуем уравнениеx 2 – 2 x – 3 = 0 при помощи выделения полного квадрата на функции: y = (x –1) 2 иy =4. Корни уравнения – абсциссы точек пересечения параболы с прямой.

5. Разделим почленно обе части уравненияx 2 – 2 x – 3 = 0 на x , получим x – 2 – 3/ x = 0 , разобьём данное уравнение на две функции: y = x – 2, y = 3/ x . Корни уравнения – абсциссы точек пересечения прямой и гиперболы.

5. Графическое решение уравнений степени n

Пример 1. Решить уравнение x 5 = 3 – 2 x .

y = x 5 , y = 3 – 2 x .

Ответ: x = 1.

Пример 2. Решить уравнение 3 x = 10 – x .

Корнями данного уравнения является абсцисса точки пересечения графиков двух функций: y = 3 x , y = 10 – x .

Ответ: x = 8.

Заключение

Рассмотрев графики функций: у = ax 2 + bx + c , у = k / x , у = √ x , у = |x |, у = x 3, у = x 4,у = 3√x , я заметила, что все эти графики строятся по правилу параллельного переноса относительно осей x и y .

На примере решения квадратного уравнения можно сделать выводы, что графический способ применим и для уравнений степени n.

Графические способы решения уравнений красивы и понятны, но не дают стопроцентной гарантии решения любого уравнения. Абсциссы точек пересечения графиков могут быть приближёнными.

В 9 классе и в старших классах я буду ещё знакомиться с другими функциями. Мне интересно знать: подчиняются ли те функции правилам параллельного переноса при построении их графиков.

На следующий год мне хочется также рассмотреть вопросы графического решения систем уравнений и неравенств.

Литература

1. Алгебра. 7 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

2. Алгебра. 8 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

3. Алгебра. 9 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

4. Глейзер Г.И. История математики в школе. VII–VIII классы. – М.: Просвещение, 1982.

5. Журнал Математика №5 2009; №8 2007; №23 2008.

6. Графическое решение уравнений сайты в Интернете: Тол ВИКИ; stimul.biz/ru; wiki.iot.ru/images; berdsk.edu; pege 3–6.htm.

Графическое решение уравнений

Расцвет, 2009

Введение

Необходимость решать квадратные уравнения еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения вавилоняне умели решать еще около 2000 лет до н.э. Правило решения этих уравнений, изложенное в Вавилонских текстах, совпадает по существу с современными, однако неизвестно, каким образом дошли вавилоняне до этого правила.

Формулы решения квадратных уравнений в Европе были впервые изложены в «Книге абака», написанной в 1202 году итальянским математиком Леонардо Фибоначчи. Его книга способствовала распространению алгебраических знаний не только в Италии, но и Германии, Франции и других странах Европы.

Но общее правило решения квадратных уравнений, при всевозможных комбинациях коэффициентов b и c было сформулировано в Европе лишь в 1544 году М. Штифелем.

В 1591 году Франсуа Виет ввел формулы для решения квадратных уравнений.

В древнем Вавилоне могли решить некоторые виды квадратных уравнений.

Диофант Александрийский и Евклид , Аль-Хорезми и Омар Хайям решали уравнения геометрическими и графическими способами.

В 7 классе мы изучали функции у = С, у = kx , у = kx + m , у = x 2 , у = – x 2 , в 8 классе – у = √ x , у = |x |, у = ax 2 + bx + c , у = k / x . В учебнике алгебры 9 класса я увидела ещё не известные мне функции: у = x 3 , у = x 4 , у = x 2 n , у = x - 2 n , у = 3 √x , ( x a ) 2 + (у – b ) 2 = r 2 и другие. Существуют правила построения графиков данных функций. Мне стало интересно, есть ли ещё функции, подчиняющиеся этим правилам.

Моя работа заключается в исследовании графиков функций и графическом решении уравнений.

1. Какие бывают функции

График функции – это множество всех точек координатной плоскости, абсциссы которых равны значениям аргументов, а ординаты – соответствующим значениям функции.

Линейная функция задаётся уравнением у = kx + b , гдеk и b – некоторые числа. Графиком этой функции является прямая.

Функция обратной пропорциональности у = k / x , где k¹ 0. График этой функции называется гиперболой.

Функция ( x a ) 2 + (у – b ) 2 = r 2 , где а , b и r – некоторые числа. Графиком этой функции является окружность радиуса r с центром в т. А (а , b ).

Квадратичная функция y = ax 2 + bx + c где а, b , с – некоторые числа и а ¹ 0. Графиком этой функции является парабола.

Уравнение у 2 ( a x ) = x 2 ( a + x ) . Графиком этого уравнения будет кривая, называемая строфоидой.

Уравнение ( x 2 + y 2 ) 2 = a ( x 2 y 2 ) . График этого уравнения называется лемнискатой Бернулли.

Уравнение. График этого уравнения называется астроидой.

Кривая(x 2 y 2 – 2 a x) 2 =4 a 2 (x 2 + y 2) . Эта кривая называется кардиоидой.

Функции: у = x 3 – кубическая парабола, у = x 4 , у = 1/ x 2 .

2. Понятие уравнения, его графического решения

Уравнение – выражение, содержащее переменную.

Решить уравнение – это значит найти все его корни, или доказать, что их нет.

Корень уравнения – это число, при подстановке которого в уравнение получается верное числовое равенство.

Решение уравнений графическим способом позволяет найти точное или приближенное значение корней, позволяет найти количество корней уравнения.

При построении графиков и решении уравнений используются свойства функции, поэтому метод чаще называют функционально-графическим.

Для решения уравнение «делим» на две части, вводим две функции, строим их графики, находим координаты точек пересечения графиков. Абсциссы этих точек и есть корни уравнения.

3. Алгоритм построения графика функции

Зная график функции у = f ( x ) , можно построить графики функций у = f ( x + m ) , у = f ( x )+ l и у = f ( x + m )+ l . Все эти графики получаются из графика функции у = f ( x ) с помощью преобразования параллельного переноса: на m единиц масштаба вправо или влево вдоль оси x и на l единиц масштаба вверх или вниз вдоль оси y .

4. Графическое решение квадратного уравнения

На примере квадратичной функции мы рассмотрим графическое решение квадратного уравнения. Графиком квадратичной функции является парабола.

Что знали о параболе древние греки?

Современная математическая символика возникла в 16 веке.

У древнегреческих же математиков ни координатного метода, ни понятия функции не было. Тем не менее, свойства параболы были изучены ими подробно. Изобретательность античных математиков просто поражает воображение, – ведь они могли использовать только чертежи и словесные описания зависимостей.

Наиболее полно исследовал параболу, гиперболу и эллипс Аполоний Пергский , живший в 3 веке до н.э. Он же дал этим кривым названия и указал, каким условиям удовлетворяют точки, лежащие на той или иной кривой (ведь формул-то не было!).

Существует алгоритм построения параболы:

Находим координаты вершины параболы А (х 0 ; у 0): х 0 =- b /2 a ;

Y 0 =ах о 2 +вх 0 +с;

Находим ось симметрии параболы (прямая х=х 0);

Составляем таблицу значений для построения контрольных точек;

Строим полученные точки и построим точки им симметричные относительно оси симметрии.

1. По алгоритму построим параболу y = x 2 – 2 x – 3 . Абсциссы точек пересечения с осью x и есть корни квадратного уравнения x 2 – 2 x – 3 = 0.

Существует пять способов графического решения этого уравнения.

2. Разобьём уравнение на две функции: y = x 2 и y = 2 x + 3

3. Разобьём уравнение на две функции: y = x 2 –3 и y =2 x . Корни уравнения – абсциссы точек пересечения параболы с прямой.

4. Преобразуем уравнениеx 2 – 2 x – 3 = 0 при помощи выделения полного квадрата на функции: y = ( x –1) 2 иy =4. Корни уравнения – абсциссы точек пересечения параболы с прямой.

5. Разделим почленно обе части уравненияx 2 – 2 x – 3 = 0 на x , получим x – 2 – 3/ x = 0 , разобьём данное уравнение на две функции: y = x – 2, y = 3/ x . Корни уравнения – абсциссы точек пересечения прямой и гиперболы.

5. Графическое решение уравнений степени n

Пример 1. Решить уравнение x 5 = 3 – 2 x .

y = x 5 , y = 3 – 2 x .

Ответ: x = 1.

Пример 2. Решить уравнение 3 x = 10 – x .

Корнями данного уравнения является абсцисса точки пересечения графиков двух функций: y = 3 x , y = 10 – x .

Ответ: x = 8.

Заключение

Рассмотрев графики функций: у = ax 2 + bx + c , у = k / x , у = √ x , у = |x |, у = x 3 , у = x 4 , у = 3 √x , я заметила, что все эти графики строятся по правилу параллельного переноса относительно осей x и y .

На примере решения квадратного уравнения можно сделать выводы, что графический способ применим и для уравнений степени n.

Графические способы решения уравнений красивы и понятны, но не дают стопроцентной гарантии решения любого уравнения. Абсциссы точек пересечения графиков могут быть приближёнными.

В 9 классе и в старших классах я буду ещё знакомиться с другими функциями. Мне интересно знать: подчиняются ли те функции правилам параллельного переноса при построении их графиков.

На следующий год мне хочется также рассмотреть вопросы графического решения систем уравнений и неравенств.

Литература

1. Алгебра. 7 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

2. Алгебра. 8 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

3. Алгебра. 9 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

4. Глейзер Г.И. История математики в школе. VII–VIII классы. – М.: Просвещение, 1982.

5. Журнал Математика №5 2009; №8 2007; №23 2008.

6. Графическое решение уравнений сайты в Интернете: Тол ВИКИ; stimul.biz/ru; wiki.iot.ru/images; berdsk.edu; pege 3–6.htm.