Самый мощный пожар в космосе. Олимпийский огонь в космосе


Так уж устроен любознательный человек: нет ничего лучше и занимательней интересного, необычного эксперимент. А если эксперимент называется «огонь в Космосе», ним заинтересуются миллионы. Те кто следит за научными новостями, помнят потрясающие фото и видео 11 июня 2017 г., как горел в невесомости грузовой корабль Cygnus OA-7 «Джон Гленн». Намеренный поджог и все происходящее записывалось на камеру. С какой целью? Об этом и стоит поговорить подробнее.

Суть игры с огнем в невесомости

Не стоит объяснять почему огонь в Космосе опаснее, чем на Земле. На Земле работают законы гравитации, в случае пожара есть куда убежать и чем погасить огонь. А как быть, если возникает огонь в открытом Космосе? Возможно ли это вообще? Даст ли пламя дым? И как быстро распространится?

Эти вопросы решили выяснить исследователи НАСА. Для создателей космических кораблей крайне важно знать горит ли огонь в Космосе, как поведет себя дым в невесомости. Фото и видео трех экспериментов присутствуют в открытом доступе.

Эксперименты на тему «как огонь горит в Космосе» (официально SAFFIRE) проводились с 2016 года. Суть заключалась в поджоге лоскута ткани из смеси хлопка и стеклопластика в стальной коробке размером 1 метр на 1,5 метра. При этом поджог осуществлялся в потоке воздуха вентиляторов. Делалось это чтобы понять, как огонь в вакууме поведет себя в разных условиях. Происходящее в ходе эксперимента снималось на фото и видео.

Справа огонь на Земле, слева огонь в невесомости

Во время второго эксперимента сожгли в такой же коробке в условиях невесомости девять образцов разных материалов, используемых в строительстве космических кораблей. Цель: определить огнестойкость образцов, влияние толщины материала на скорость распространения огня в Космосе.

При третьем и последнем эксперименте жгли повторно ткань с нитями из оргстекла, используемую для изготовления спецодежды, но при измененной скорости воздушного потока. Полученные после первого аналогичного эксперимента данные вводились в компьютер, который их обработал и выдал результаты предсказывающие вероятность и скорость возгорания материала. Теперь требовалось их проверить, чтобы убедиться в правильности работы компьютерного модуля.

Что показали результаты

Что же выяснилось в итоге? Компьютерный модуль ошибался, но в другую сторону: возгорание и распространение огня происходило медленнее, чем предполагалось. Лоскуты больших размеров сгорали медленнее, чем маленькие образцы, и давали меньше дыма. А это означает, что пожар обнаружат позже и устранить сложнее.

В целом установили: огонь в условиях невесомости горит иначе, чем на Земле. Отличия заключаются в следующем:

  • огонь в космосе тянет в себя кислород из воздуха в 100 раз медленнее чем на Земле;
  • пламя возгорается даже при низкой концентрации кислорода;
  • возгорание возможно при низких температурах;
  • в условиях невесомости огонь не выбрасывает продукты сгорания, так как не нагреваются газы кислорода;
  • если поджечь каплю метанола, горение продолжается даже после того, как огонь исчез.

Последний парадокс поразил исследователей больше всего, на данный момент ученые не могут объяснить его причины.

Ответ на вопрос есть ли огонь в космосе получили давно. А теперь благодаря опасным «зажиганиям» НАСА в невесомости еще и точно известно, как он ведет себя в разных условиях. Опыты с поджогами не окончились и вскоре будут оглашены новые результаты.


НАСА играет с огнем на Международной космической станции, причем буквально.

Эксперимент «Флекс» проводится с марта 2009 года. Его цель состоит в том, чтобы лучше понять, как ведет себя огонь в микрогравитации. Результаты исследования могут подтолкнуть ученых к созданию улучшенных систем тушения огня на борту будущих космических кораблей.

Огонь в космосе горит иначе, чем на Земле. Когда огонь горит на Земле, он нагревает газы и «выбрасывает» продукты сгорания. В микрогравитации горячие газы не появляются. Таким образом, в космосе это совершенно другой процесс.

"В космосе пламя тянет к себе кислород в 100 раз медленнее, чем на Земле", - говорят исследователи.

Космический огонь может также гореть при более низкой температуре и с меньшим количеством кислорода.

Чтобы изучить поведение огня в космосе, ученые проекта «Флекс» зажигают каплю гептана или метанола на специальном приспособлении. Капелька загорается, ее охватывает сферическое пламя, и камеры делают запись всего процесса.

В процессе горения исследователи наблюдали некоторые неожиданные явления.

"К настоящему времени самая удивительная вещь, которую мы наблюдали, это продолжение горения капель гептана после исчезновения пламени. Мы еще не поняли, почему так происходит".

"На сегодняшний день еще много чего не понятно в процессе горения в космосе. Мы будем над этим работать".

Огонь в невесомости September 12th, 2015

Слева - свечка горит на Земле, а справа - в невесомости.

Вот подробности …

Эксперимент, проведенный на борту Международной космической станции, дал неожиданные результаты – открытое пламя повело себя совсем не так, как ожидали ученые.

Как любят говорить некоторые ученые, огонь – это древнейший и самый успешный химический эксперимент человечества. Действительно, огонь шел с человечеством всегда: от первых костров, на которых жарили мясо, до пламени ракетного двигателя, который доставил человека на Луну. По большому счету, огонь является символом и орудием прогресса нашей цивилизации.

Доктор Форман А. Уильямс, (Forman A. Williams), профессор физики в Калифорнийском университете в Сан-Диего, давно работает над изучением пламени. Обычно огонь – это сложнейший процесс тысяч взаимосвязанных химических реакций. Например в пламени свечи углеводородные молекулы испаряются с фитиля, расщепляются под воздействием тепла и соединяются с кислородом, производя свет, тепло, CO2 и воду. Некоторые из углеводородных фрагментов в форме кольцеобразных молекул, называемых полициклическими ароматическими углеводородами, образуют сажу, которая может также сгореть либо превратиться в дым. Знакомую каплевидную форму огоньку свечи придает гравитация и конвекция: горячий воздух поднимается вверх и затягивает в пламя свежий холодный воздух, благодаря чему пламя тянется вверх.

Но, оказывается, в невесомости все происходит иначе. В ходе эксперимента под названием FLEX, ученые изучали огонь на борту МКС, чтобы разработать технологии тушения пожаров в невесомости. Исследователи поджигали небольшие пузыри гептана внутри специальной камеры и смотрели, как ведет себя пламя.

Ученые столкнулись со странным явлением. В условиях микрогравитации, пламя горит по-другому оно образует маленькие шарики. Это явление было ожидаемым, поскольку в отличие от пламени на Земле, в невесомости кислород и топливо встречаются в тонком слое на поверхности сферы, Это простая схема, которая отличается от земного огня. Тем не менее, обнаружилась странность: ученые наблюдали продолжение горения огненных шариков даже после того, как по всем расчетам горение должно было прекратиться. При этом огонь перешел в так называемую холодную фазу – он горел очень слабо, настолько, что пламя невозможно было увидеть. Тем не менее, это было горение, и пламя могло мгновенно вспыхнуть с большой силой при контакте с топливом и кислородом.

Обычно видимый огонь горит при высокой температуре между 1227 и 1727 градусами Цельсия. Гептановые пузыри на МКС также ярко горели при этой температуре, но по мере исчерпания топлива и остывания, началось совсем другое горение — холодное. Оно проходит при относительно низкой температуре 227-527 градусов Цельсия и производят не сажу, CO2 и воду, а более токсичные моноксид углерода и формальдегид.

Похожие типы холодного пламени в лабораториях воспроизводились и на Земле, но в условиях гравитации сам по себе такой огонь неустойчив и всегда быстро затухает. На МКС, однако, холодное пламя может устойчиво гореть несколько минут. Это не очень приятное открытие, так как холодный огонь предоставляет собой повышенную опасность: он легче зажигается, в том числе самопроизвольно, его сложнее обнаружить и, к тому же, он выделяет больше токсичных веществ. С другой стороны, открытие может найти практическое применение, например в технологии HCCI, которая предполагает зажигание топлива в бензиновых моторах не от свечей, а от холодного пламени.

Эксперимент FLEX, проведенный на борту Международной космической станции, дал неожиданные результаты – открытое пламя повело себя совсем не так, как ожидали ученые.


Как любят говорить некоторые ученые, огонь – это древнейший и самый успешный химический эксперимент человечества. Действительно, огонь шел с человечеством всегда: от первых костров, на которых жарили мясо, до пламени ракетного двигателя, который доставил человека на Луну. По большому счету, огонь является символом и орудием прогресса нашей цивилизации.


Разница пламени на Земле (слева) и в условиях невесомости (справа) очевидна. Так или иначе, человечеству вновь придется осваивать огонь – на этот раз в космосе.

Доктор Форман А. Уильямс, (Forman A. Williams), профессор физики в Калифорнийском университете в Сан-Диего, давно работает над изучением пламени. Обычно огонь – это сложнейший процесс тысяч взаимосвязанных химических реакций. Например в пламени свечи углеводородные молекулы испаряются с фитиля, расщепляются под воздействием тепла и соединяются с кислородом, производя свет, тепло, CO2 и воду. Некоторые из углеводородных фрагментов в форме кольцеобразных молекул, называемых полициклическими ароматическими углеводородами, образуют сажу, которая может также сгореть либо превратиться в дым. Знакомую каплевидную форму огоньку свечи придает гравитация и конвекция: горячий воздух поднимается вверх и затягивает в пламя свежий холодный воздух, благодаря чему пламя тянется вверх.

Но, оказывается, в невесомости все происходит иначе. В ходе эксперимента под названием FLEX, ученые изучали огонь на борту МКС, чтобы разработать технологии тушения пожаров в невесомости. Исследователи поджигали небольшие пузыри гептана внутри специальной камеры и смотрели, как ведет себя пламя.

Ученые столкнулись со странным явлением. В условиях микрогравитации, пламя горит по-другому оно образует маленькие шарики. Это явление было ожидаемым, поскольку в отличие от пламени на Земле, в невесомости кислород и топливо встречаются в тонком слое на поверхности сферы, Это простая схема, которая отличается от земного огня. Тем не менее, обнаружилась странность: ученые наблюдали продолжение горения огненных шариков даже после того, как по всем расчетам горение должно было прекратиться. При этом огонь перешел в так называемую холодную фазу – он горел очень слабо, настолько, что пламя невозможно было увидеть. Тем не менее, это было горение, и пламя могло мгновенно вспыхнуть с большой силой при контакте с топливом и кислородом.

Обычно видимый огонь горит при высокой температуре между 1227 и 1727 градусами Цельсия. Гептановые пузыри на МКС также ярко горели при этой температуре, но по мере исчерпания топлива и остывания, началось совсем другое горение - холодное. Оно проходит при относительно низкой температуре 227-527 градусов Цельсия и производят не сажу, CO2 и воду, а более токсичные моноксид углерода и формальдегид.

Похожие типы холодного пламени в лабораториях воспроизводились и на Земле, но в условиях гравитации сам по себе такой огонь неустойчив и всегда быстро затухает. На МКС, однако, холодное пламя может устойчиво гореть несколько минут. Это не очень приятное открытие, так как холодный огонь предоставляет собой повышенную опасность: он легче зажигается, в том числе самопроизвольно, его сложнее обнаружить и, к тому же, он выделяет больше токсичных веществ. С другой стороны, открытие может найти практическое применение, например в технологии HCCI, которая предполагает зажигание топлива в бензиновых моторах не от свечей, а от холодного пламени.

Эксперимент FLEX, проведенный на борту Международной космической станции, дал неожиданные результаты – открытое пламя повело себя совсем не так, как ожидали ученые.

Как любят говорить некоторые ученые, огонь – это древнейший и самый успешный химический эксперимент человечества. Действительно, огонь шел с человечеством всегда: от первых костров, на которых жарили мясо, до пламени ракетного двигателя, который доставил человека на Луну. По большому счету, огонь является символом и орудием прогресса нашей цивилизации.


Разница пламени на Земле (слева) и в условиях невесомости (справа) очевидна. Так или иначе, человечеству вновь придется осваивать огонь – на этот раз в космосе.

Доктор Форман А. Уильямс, (Forman A. Williams), профессор физики в Калифорнийском университете в Сан-Диего, давно работает над изучением пламени. Обычно огонь – это сложнейший процесс тысяч взаимосвязанных химических реакций. Например в пламени свечи углеводородные молекулы испаряются с фитиля, расщепляются под воздействием тепла и соединяются с кислородом, производя свет, тепло, CO2 и воду. Некоторые из углеводородных фрагментов в форме кольцеобразных молекул, называемых полициклическими ароматическими углеводородами, образуют сажу, которая может также сгореть либо превратиться в дым. Знакомую каплевидную форму огоньку свечи придает гравитация и конвекция: горячий воздух поднимается вверх и затягивает в пламя свежий холодный воздух, благодаря чему пламя тянется вверх.

Но, оказывается, в невесомости все происходит иначе. В ходе эксперимента под названием FLEX, ученые изучали огонь на борту МКС, чтобы разработать технологии тушения пожаров в невесомости. Исследователи поджигали небольшие пузыри гептана внутри специальной камеры и смотрели, как ведет себя пламя.

Ученые столкнулись со странным явлением. В условиях микрогравитации, пламя горит по-другому оно образует маленькие шарики. Это явление было ожидаемым, поскольку в отличие от пламени на Земле, в невесомости кислород и топливо встречаются в тонком слое на поверхности сферы, Это простая схема, которая отличается от земного огня. Тем не менее, обнаружилась странность: ученые наблюдали продолжение горения огненных шариков даже после того, как по всем расчетам горение должно было прекратиться. При этом огонь перешел в так называемую холодную фазу – он горел очень слабо, настолько, что пламя невозможно было увидеть. Тем не менее, это было горение, и пламя могло мгновенно вспыхнуть с большой силой при контакте с топливом и кислородом.

Обычно видимый огонь горит при высокой температуре между 1227 и 1727 градусами Цельсия. Гептановые пузыри на МКС также ярко горели при этой температуре, но по мере исчерпания топлива и остывания, началось совсем другое горение - холодное. Оно проходит при относительно низкой температуре 227-527 градусов Цельсия и производят не сажу, CO2 и воду, а более токсичные моноксид углерода и формальдегид.

Похожие типы холодного пламени в лабораториях воспроизводились и на Земле, но в условиях гравитации сам по себе такой огонь неустойчив и всегда быстро затухает. На МКС, однако, холодное пламя может устойчиво гореть несколько минут. Это не очень приятное открытие, так как холодный огонь предоставляет собой повышенную опасность: он легче зажигается, в том числе самопроизвольно, его сложнее обнаружить и, к тому же, он выделяет больше токсичных веществ. С другой стороны, открытие может найти практическое применение, например в технологии HCCI, которая предполагает зажигание топлива в бензиновых моторах не от свечей, а от холодного пламени.